Добавлен: 26.04.2024
Просмотров: 19
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Достоинства:
отсутствие необходимости подсветки,
угол обзора в 180°,
весьма точная цветопередача,
малые масса и габариты.
Также допустимо изготовление гибких дисплеев и дисплеев с толщиной всего в несколько миллиметров.
Недостатки:
деградация пикселей при прямом попадании солнечного света,
выход из строя люминофоров синего цвета через примерно тысячу часов непрерывной работы.
5. Дисплеи на углеродных нанотрубках
Углеродной нанотрубкой именуют образование, имеющее длину от нескольких десятков нанометров до нескольких десятков миллиметров, похожее на полую трубу радиусом примерно в несколько нанометров, у которой стенки сформированы углеродом и обладают толщиной всего в один атом.
Углеродные молекулы нанотрубок, имеющие сферическую форму, называют фуллеренами, а имеющие форму длинных трубок, концы которых имеют окончание в виде гладких полусфер, именуют тубеленами.
В вакууме, когда тубелены, длиной около десятка нанометров, с острыми, а не полусферическими, концами будут помещены в электрическое поле, на них возможно возникновение автоэлектронной эмиссии. Нанотрубки размещают на подложке, выполненной обычно из кварца или кремния, в вакууме под давлением 1,32 • 10–10 атм. Плотность тока эмиссии катодов достигает 4 мА / см2 . Нанотрубки размещают в виде матрицы. Излучение нанотрубок попадает на три люминофора, которые начинают светиться красным, синим и зелёным. Этот свет с видимым глазом человека спектром проникает через прозрачную, чаще всего стеклянную пластину, который и воспринимает пользователь.
Цветные панели и дисплеи на углеродных нанотрубках обладают высокой механической прочностью, высокой яркостью вплоть до 8000 кд / м2 , углом обзора до 160°, высоким быстродействием и возможностью непрерывной работы в течение многих тысяч часов. Нанотрубки, кроме того, применяют для изготовления светодиодов, транзисторов, процессоров, прозрачных электродов, люминесцентных ламп и прочих, которые могут работать в условиях радиации. Теоретически возможно создание компонентов на нанотрубках, выдерживающих нагрев до температуры примерно в 1000°C.
6. Сенсорные экраны и классификация их типов
Сенсорным экраном называют устройство, монтируемое на обозреваемую пользователем поверхность дисплея, чувствительное к прикосновениям. При поднесении пальца, указки, электронного пера и т.п. к выбранному изображению на поверхности дисплея, специальный контроллер считывает координаты точки прикосновения, и отправляет эти сведения на последующую обработку. Отслеживание места касания может быть реализовано согласно ёмкостной, резистивной, инфракрасной, тензометрической, на ПАВ (поверхностные акустические волны), или электромагнитной технологиям.
Сенсорный экран, выполненный по ёмкостной технологии, состоит из стеклянной пластины, на которую сзади нанесена прямоугольная сетка из прозрачных токопроводящих электродов, к краям которой подсоединяют генераторы переменных напряжений. При прикосновении к определённой точке сенсорного экрана в её окрестности возрастает ёмкость, увеличиваются переменные токи утечки, сила которых пропорциональна расстояниям до краёв пластин. Измеряя силы токов, вычисляют положение точки прикосновения к сенсорному экрану.
Достоинства:
малое время отклика, составляющее обычно от 3 мс до 20 мс, число нажатий до выхода экрана из строя может превышать сотни миллионов,
высокая механическая прочность.
Недостаток: не реагирует на прикосновение непроводящим ток предметом.
Сенсорный экран, выполненный по резистивной технологии, имеет жёсткую пластину, покрытую резистивным веществом, перед которой располагают пластиковую мембрану, также покрытую резистивным веществом. Материалом пластины обычно выступает стекло или полиэстер. Между пластиной и мембраной размещают изолирующие гранулы. К краям пластины и мембраны подключают внешние источники питания. При нажатии на резистивный экран мембрана продавливает слой изоляции, что приводит к её соприкосновению с пластиной. Токи, потребляемые от генераторов, будут пропорциональны расстояниям до точки прикосновения. Резистивные покрытия и мембраны и пластины необходимы для отслеживания положения точки и по горизонтали, и по вертикали.
Достоинства:
низкая стоимость,
чувствительность экрана к прикосновениям и проводящим, и диэлектрическим предметом.
Недостатки: число нажатий до разрушения обычно на порядок меньше, чем у сенсорных экранов по ёмкостной технологии, а также ниже механическая прочность.
В сенсорном экране, выполненном по инфракрасной технологии, сетка инфракрасных волн образована инфракрасными светодиодами, размещёнными с одной стороны экрана по вертикали и горизонтали, и принимаемая фототранзисторами, установленными с другой стороны экрана. Если любой непрозрачный для инфракрасных волн предмет будет поднесён достаточно близко к сенсорному экрану, и поглотит или отразит падающее на фототранзистор излучение, то система отреагирует и определит координаты точки прикосновения.
Достоинства:
чувствительность экрана к прикосновениям любым предметом,
задерживающим инфракрасное излучение.
Недостатки:
большое время отклика,
высокая стоимость,
возможность использования лишь для плоских дисплеев,
низкая разрешающая способность.
Сенсорный экран, выполненный по технологии ПАВ, обладает стеклянной плитой, по которой пропускают от источников к приёмникам колебаний поверхностноакустические волны с частотой в несколько мегагерц. Источники и приёмники ПАВ – это пьезоэлектрические преобразователи, выполняемые обычно в виде плёнок сульфида кадмия, установленные по краям экрана. Излучённые поверхностно-акустические волны достигают противоположной стороны экрана и отражаются обратно, где попадают на датчики. Если осуществить прикосновение к экрану, то поверхностно-акустические волны будут частично поглощены и преломлены, что зарегистрируют датчики. Полученную информацию сравнивают с заранее записанной информацией о всевозможных распространениях волн и на этой основе формируют сигнал не только о положении точки касания в пространстве, но и силы, с которой оно было произведено.
Достоинства: наработка на отказ сенсорного экрана на основе ПАВ обычно в несколько раз превышает наработку на отказ экрана по резистивной технологии.
Недостатки: высокая стоимость, низкая разрешающая способность, ограниченная стоимостью изделия, чувствительность к механическим колебаниям, получение ошибочной информации при воздействии вибраций.
7. Голографические системы
Голографической называют систему, в которой представление определённой оптической информации обеспечено интерференцией двух волн: отражённой от объекта и когерентной с ней волны.
Источником когерентного излучения служит специальный лазер. Волну, которая отражена от объекта, называют объектной или предметной, а когерентную волну называют опорной. При наложении объектной и опорной волн на определённых участках происходит пространственное сложение их амплитуд с учётом фаз. В этих участках пространства интенсивности амплитуд, которые имеют световые волны, могут лежать в диапазоне от их взаимной разности до их взаимной суммы. Все участки пространства, на которых появляются интерференции, образуют интерференционную картину. Если в месте образования интерференционной картины поместить плоскую фотопластинку, то изображение, возникающее на этой пластинке, называют голограммой.
Голограммы позволяют полностью воссоздать изображение исходного объекта, так как содержат информацию и об амплитудах, и о фазах волн; в том числе они могут дать изображение обратной стороны наблюдаемого объекта.
УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ИНДИКАТОРОВ
Для воспроизведения мнемонических символов, букв и цифр используют буквенно-цифровые индикаторы.
Единичным называют индикатор, который отражает один символ или одну цифру. Одноразрядным называют индикатор, у которого выводы всех излучателей света не соединены друг с другом и выведены из корпуса для подключения к устройству управления.
Сегментным называют индикатор, состоящий из нескольких излучателей, в котором отображение одного знака или символа обеспечивает один источник света.
Матричным называют индикатор, внутри которого выводы излучателей света объединены определённым образом в матрицу, а подавая питание на определённую строку и столбец, инициируют свечение заданной ячейки.
К важнейшим параметрам индикаторов относят
угол обзора,
число цветов,
яркость,
разрешение по горизонтали и вертикали,
контрастность,
потребляемую мощность,
время отклика и прочее.
Светодиодные индикаторы выполняют из ряда размещённых определённым образом отдельных светодиодов. Подавая питание на некоторые полупроводниковые кристаллы светодиодных структур индикатора, получают излучение нужных светодиодов. Оно попадает непосредственно на прозрачный участок корпуса индикатора, или сначала на отражатели, свечение которых имеет вид знака или символа. Для питания светодиодных индикаторов необходимо постоянное напряжение от 1,6 до 3,5 В.
Чтобы получить нужный цвет свечения, применяют светодиоды, генерирующие свет с необходимой длиной волны, или прежде чем выпустить из корпуса излучённый свет, пропускают через светофильтр.
Достоинства светодиодных индикаторов состоят в чёткой форме символов и знаков, в низком напряжении питания, в небольшой потребляемой мощности.
Недостаток заключён в малой яркости и довольно большом потребляемом токе.
Светодиодные матричные индикаторы имеют в своём составе большое количество светодиодов.
Путём подключения тех или иных светодиодов в матрицу можно сформировать любую цифру, букву, знак или символ.
Буквенно-цифровые индикаторы предназначены для отображения информации в виде цифр, букв и различных символов.
Различают следующие виды буквенно-цифровых индикаторов:
накальные
газоразрядные
светодиодные
вакуумные электролюминесцентные
жидкокристаллические
Накальные и газоразрядные индикаторы в настоящее время практически не применяются.
Светодиодные индикаторы бывают двух видов: семисегментные и матричные.
Семисегментные светодиодные индикаторы предназначены для отображения информации в виде цифр и включают в свой состав восемь светодиодов, семь из которых имеют форму сегментов, а один, восьмой – точка.
Семисегментные индикаторы выпускаются двух видов – с объединённым анодом или с объединённым катодом.
Вакуумные электролюминесцентные индикаторы. Принцип действия основан на том, что аноды в виде металлизированных сегментов, покрытые люминофором, будут светиться при попадании на них электронного потока.
В состав такого индикатора входят:
1 - катод для создания термоэлектронной эмиссии;
2 - ускоряющая сетка;
3 - маска;
4 - аноды.
Катод создаёт электронный поток, который ускоряется сеткой и через маску попадает на теаноды, к которым подведено напряжение и вызывает свечение люминофора.
Маска представляет собой металлическую фольгу с прорезями по конфигурации анодов и предназначена для более чёткой конфигурации цифр.
Достоинства: наибольшая яркость свечения из всех типов индикаторов, сравнительно низкие питающие напряжения.
Недостаток: большой потребляемый ток.
Жидкокристаллические индикаторы - это материал в виде длинных цепочек с очень высокой подвижностью.
Жидкие кристаллы – это вещества, молекулы которых обладают высокой подвижностью, и склонны к упорядоченной ориентации в электрическом поле. Удельное сопротивление жидких кристаллов велико и достигает от 106 до 1011 Ом.
П ри комнатной температуре в отсутствие электрического поля ориентация молекул жидких кристаллов хаотична, ввиду чего вещество не прозрачно. При возникновении электрического поля происходит упорядочивание молекул, молекулы ориентируются относительно линии напряжённости поля, и в результате вещество становится оптически прозрачно.