Файл: Микропроцессорные устройства систем управления.doc

ВУЗ: Не указан

Категория: Решение задач

Дисциплина: Не указана

Добавлен: 27.04.2024

Просмотров: 171

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Микропроцессорные устройства систем управления

1. Общая характеристика микропроцессоров.

1.1. Структура микропроцессора и его реализация.

1.2. Классификация современных микропроцессоров и их характеристики.

1.3. Принципы управления микропроцессорами.

1.4. Структура и типы команд микропроцессора.

1.5. Способы адресации информации и прерывание работы в микропроцессоре.

Прямая адресация.

Прямая регистровая адресация.

Косвенная регистровая адресация.

Непосредственная адресация

Относительная адресация

Адресация с индексированием

Стековая адресация

1.6. Организация ввода и вывода данных в микропроцессоре.

1.7. Система команд микропроцессора.

2. Принципы организации и применения микропроцессорных систем.

2.1. Особенности организации структуры МП-системы.

2.2. Структура МП-системы с общей шиной.

2.3. Интерфейсы МП-систем.

2.4. Применение МП-системы в качестве контроллера и системы сбора данных.

3. Основы программирования микропроцессоров.

3.1. Языки программирования микропроцессоров.

3.2. Программирование на языке ассемблера.

3.3. Средства разработки и отладки прикладных программ.

Средства отладки и диагностирования

Программные средства:

Аппаратно-программные средства:

4. Типовые микропроцессоры и их применение.

4.1. Структура и характеристика типовых МП.

4.3. Примеры написания программ.

5. Мультипроцессорные системы, транспьютеры.

5.1. Классификация систем параллельной обработки данных

Конвейерная и векторная обработка.

Машины типа SIMD.

Машины типа MIMD.

Многопроцессорные машины с SIMD-процессорами.

Многопроцессорные системы с общей памятью

5.2 Мультипроцессорная когерентность кэш-памяти.

5.3. Многопроцессорные системы с локальной памятью и многомашинные системы

5.4. Транспьютеры



Двоичное число в поле "операнд" в большинстве языков ассемблера дополняется в конце латинской буквой В, например:


Операция

Операнд

ANI

00010000В


Записанный оператор производит операцию поразрядного логического умножения содержимого аккумулятора и числа 000100002 (индекс 2 указывает на то, что число двоичное).

Восьмеричное число в поле "операнд" дополняется буквой О или Q, например:


Операция

Операнд

IN

46Q

LXI

SP,10307O


Первый оператор передает в аккумулятор данные из порта, адрес которого 468, а второй - заносит в указатель стека SP число 103078.

Широкое применение при написании программ получила шестнадцатеричная форма представления чисел. В шестнадцатеричной системе счисления используется 16 символов: десять цифровых (от 0 до 9) и шесть буквенных (от А до F). Ниже приведено соответствие между десятичными, двоичными и шестнадцатеричными значениями величин.


Десятичное значение

Двоичное

Значение

Шестнадцатеричное значение

0

0000

0

1

0001

1

2

0010

2

3

0011

3

4

0100

4

5

0101

5

6

0110

6

7

0111

7

8

1000

8

9

1001

9

10

1010

A

11

1011

B

12

1100

C

13

1101

D

14

1110

E

15

1111

F



Для перевода двоичного числа в шестнадцатеричное оно разбивается на тетрады, т.е. группы по 4 разряда в каждой. При этом, если длина двоичного числа не кратна 4, оно дополняется слева нулями. После этого каждая тетрада заменяется соответствующим символом шестнадцатеричной системы.

Например, двоичное число 101100 дополняется слева двумя нулями и разбивается на тетрады 0010 и 1100. После замены каждой тетрады соответствующим символом шестнадцатеричной системы получаем шестнадцатеричное число 2С (2C16). Таким образом, для представления в шестнадцатеричной системе счисления однобайтового операнда достаточно двух разрядов, а двухбайтового операнда или адреса - четырех разрядов.

За шестнадцатеричным числом в поле "операнд" должна следовать латинская буква Н. Для того, чтобы шестнадцатеричное число можно было отличить от метки, оно должно начинаться с цифры. В случае, если первым символом является буква, перед числом проставляется незначащий нуль. Рассмотрим примеры:

Операция


Операнд

LDA

6CA2H

LXI

В, 0Е060Н


Первый оператор пересылает в аккумулятор содержимое ячейки памяти с адресом 6СА216, второй оператор - заносит в регистровую пару BC число E06016.

Кратко остановимся на представлении операндов и адресов с помощью выражений.

Выражение состоит из чисел и меток, связанных арифметическими и логическими выражениями. Вычисление выражений осуществляется при трансляции исходной программы в объектную. При этом программа-транслятор в ходе этих вычислений может производить, например, такие операции, как умножение и деление, хотя МП соответствующих команд может и не иметь. Рассмотрим пример:

Операция


Операнд

CPI

16+82/2-META


Данный оператор производит сравнение содержимого аккумулятора с числом 55 если, например, метка МЕТА имеет значение 2.

Поле "комментарии" может содержать любой пояснительный текст, который используется только для удобства чтения программы и полностью игнорируется в процессе трансляции исходной программы в объектную. Перед комментариями в большинстве языков
ассемблера ставится специальный символ, например, точка с запятой с тем, чтобы выделить его в структуре оператора для игнорирования его программой-транслятором. Слева и справа от текста в строке программы, а также между полями допустимо любое число пробелов.

Небольшие по объему исходные программы на языке ассемблера не сложно транслировать в объектные программы и ручным путем, используя приводимые в системе команд двоичные машинные коды. При ручной трансляции исходной программы оператор дополняется слева двумя полями: полем "адрес" и полем "код". Таким образом, порядок расположения полей в рассматриваемом случае следующий: "адрес", "код", "метка", "операция", "операнд", "комментарии".

Поле "адрес" содержит адреса ячеек памяти, в которых размещаются коды первых байтов команд. Поле "код" содержит коды команд. Оба поля заполняются числами в шестнадцатеричном представлении, причем буква Н в конце не проставляется.

В общем случае в языках ассемблера выделяют следующие группы операторов: операторы машинных команд, операторы псевдокоманд, макрокоманды, команды управления ассемблером.

Операторы машинных команд представляют собой мнемоническую запись машинных кодов МП. Каждый такой оператор в результате трансляции преобразуется в соответствующую машинную команду. Команды, образующие операторы машинных команд, содержатся в системе команд МП. Все рассмотренные раннее примеры операторов принадлежат группе операторов машинных команд.

В процессе трансляции исходной программы в объектную программа-транслятор ассемблер нуждается в некоторых уточнениях. Например, ассемблер не знает, в какую ячейку памяти должна быть помещена первая команда программы. Эта и другая информации, необходимая для работы ассемблера, вводится в виде так называемых операторов псевдокоманд. Приставка "псевдо" указывает на то, что такие команды не отображаются машинными кодами в объектной программе, а используются только в процессе трансляции. Мнемоника и состав таких команд для каждого языка ассемблера индивидуальны.

Макрокомандой можно назвать такой оператор, который при трансляции в объектную программу заменяется последовательностью других операторов. Для определения макрокоманды вводятся понятие макроопределения.
Макроопределение представляет собой последовательность операторов, задаваемых макрокомандой. Макроопределение может находиться как в тексте основной программы, но чаще всего в библиотеке макроопределений.

Команды управления ассемблером не являются элементом языка программирования, а служат для организации диалогового режима между программистом и ЭВМ, на которой осуществляется ассемблирование. Операторы этой группы могут управлять режимами выдачи листинга, обеспечивать выбор внешних устройств для ввода программы и вывода результатов трансляции и прочие аналогичные функции.

3.3. Средства разработки и отладки прикладных программ.


С точки зрения особенностей МПС можно выделить следующие этапы, типичные для их создания:

  1. формализация требований к системе;

  2. разработка структуры и архитектуры системы;

  3. разработка и изготовление аппаратурных средств и програм­много обеспечения системы;

  4. комплексная отладка и приемосдаточные испытания.

На каждом этапе проектирования микропроцессорной системы могут быть внесены неисправности людьми и приняты неверный проектные решения. Кроме того, в аппаратуре могут возникнуть дефекты. Средства отладки и диагностирования призваны обнаружить эти ошибки на самых ранних этапах.

Под диагностикой будем понимать процесс определения причины появления ошибки по результатам тестирования, а под отладкой – процесс обнаружения ошибок и определение источников их появления по результатам тестирования при проектировании МПС.

Отладка аппаратуры предполагает проверку отдельных устройств микропроцессорной системы — процессора, ОЗУ, контроллеров — путем подачи тестовых входных воздействий и съема ответных реакций. Тестовые входные воздействия и ответные реакции определяются исходя из спецификаций на устройств, а также структурных схем устройств. При этом проверяются реальная аппаратура прототипа, спецификации, структурные схем, отлаживаются тесты.

Отладка программ микропроцессорной системы проводится, как правило, на тех же ЭВМ, на которых велась разработка программ, и на том же языке программирования, на котором написаны отлаживаемые программы. Она может быть начата даже при отсутствии аппаратуры микропроцессор­ной системы. При этом в системном программном обеспечении ЭВМ должны находиться программы (интерпретаторы или эмуляторы), моделирующие функции отсутствующих аппаратурных средств. Кроме того, при отладке программ может отсутствовать внешняя среда микропроцессорной системы, которую необходимо также моделировать.

К традиционным методам комплексной отладки аппаратуры и программного обеспечения микропроцессорных систем можно отнести следующие:

  1. схемная эмуляция, в том числе внутрисхемная, а также с использованием режима ONCE (у микроконтроллеров фирмы Intel);

  2. эмуляция памяти программ;

  3. использование внутренних специальных средств микропроцессорных БИС (например, BDM порта микроконтроллеров фирмы Motorola);

  4. использование внешних относительно целевой БИС аппаратных средств, размещаемых на плате микропроцессорного контроллера;

  5. использование супервизора отладки, присоединяемого к плате микропроцессорного контроллера на период отладки; (разрабатывается в последнее время в качестве метода комплексной отладки).