Файл: 1. Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами умножение на число, сложение, умножение матриц.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.04.2024

Просмотров: 80

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
и имеют противоположные знаки, то внутри отрезка найдется точка такая, что . (Теорема Больцано-Коши.)

П ример. Исследовать на непрерывность и найти точки разрыва функции . Установить характер разрыва.

Решение. При функция не определена, следовательно, функция в точке терпит разрыв: , а . Так как односторонние пределы бесконечны, то - точка разрыва второго рода.


21. Производная и ее геометрический смысл. Уравнение касательной к плоской кривой в заданной точке.

Определение производной

Пусть на некотором промежутке Х определена функция y=f(x). Возьмем любую точку . Зададим аргументу х произвольное приращение ∆х ≠ 0 такое, что точка х+∆х также будет принадлежать Х. Функция получит приращение ∆у=f(x+∆х)−f(x).

Определение. Производной функции y=f(x) в точке х называется предел отношения приращения функции в этой точке к приращению аргумента при стремлении последнего к нулю (при условии, что этот предел существует).

Для обозначения производной функцииy=f(x) в точке х используются символы у′(х) или f(x).

Итак, по определению, .

Если для некоторого значения х0 выполняется условие

или
,

т.е. пределы равны бесконечности, то говорят, что в точке х0 функция имеет бесконечную производную.

Если функция y=f(x)имеет конечную производную в каждой точке , то производную f(x) можно рассматривать как функцию х, также определенную на Х. Нахождение производной функции называется дифференцированием функции. Если функция в точке х имеет конечную производную, то функция называется дифференцируемой в этой точке. Функция, дифференцируемая во всех точках промежутка Х, называется дифференцируемой на этом промежутке.

Задача о касательной

Пусть на плоскости дана непрерывная функция и необходимо найти уравнение касательной к этой кривой в точке .



Уравнение прямой по точке , принадлежащей этой прямой, и угловому коэффициенту имеет вид:

,

где , ( - угол наклона прямой).

Из (рис.5.1) найдем тангенс угла наклона секущей : .

Если точку приближать к точке , то угол будет стремиться к углу , т.е.

при .

Следовательно, .


Из задачи о касательной следует геометрический смысл производной: производная f(x0) есть угловой коэффициент (тангенс угла наклона) касательной, проведенной к кривой у=f(x) в точке х0, т.е. k= f(x0).

Следовательно, уравнение касательной к кривой y=f(x) в точке х0 примет вид



Пример. Найти производную функции f(x)=х2.

Решение. Придавая аргументу х приращение ∆х, найдем соответствующее приращение функции:



Составим отношение:



Найдем предел этого отношения при ∆х → 0:



22. Дифференцируемость функций одной переменной. Связь между дифференцируемостью и непрерывностью функции (доказать теорему).

Понятие дифференцируемости функции

Определение. Функция y=f(x) называется дифференцируемой в точке х, если ее приращение Δу в этой точке можно представить в виде

,

где А – некоторое число, не зависящее от , а α( ) – функция аргумента , являющаяся бесконечно малой при →0, т.е.

Выясним теперь связь между дифференцируемостью в точке и существованием производной в той же точке.

Теорема. Для того чтобы функция f(x) была дифференцируемой в данной точке х , необходимо и достаточно, чтобы она имела в этой точке конечную производную.

Связь между дифференцируемостью функции и ее непрерывностью


Пример. Доказать, что функция y=│х│ недифференцируема в точке х=0 .

Решение. Производная функции (если она существует) равна



Очевидно, что при х=0 производная не существует, так как отношение , т.е. не имеет предела при Δх→0 (ни конечного, ни бесконечного). Геометрически это означает отсутствие касательной к кривой в точке х=0.

Теорема. Если функция y=f(x) дифференцируема в точке х0,, то она в этой точке непрерывна.

Доказательство. По условия функция y=f(x) дифференцируема в точке х0, т.е. существует конечный предел



где f(x0) – постоянная величина, не зависящая от .

Тогда на основании теоремы о связи бесконечно малых величин с пределами функций можно записать



где α(∆х) является бесконечно малой величиной при →0, или

.

При Δх→0 на основании свойств бесконечно малых величин устанавливаем, что Δу→0 и, следовательно, по определению непрерывности функции в точке, делаем вывод, что функция непрерывна в токе х0. ■

Обратная теорема, вообще говоря, неверна, если функция непрерывна в данной точке, то она не обязательно дифференцируема в этой точке. Так, функция y=│х│ непрерывна в точке х0=0, ибо но, как было доказано ранее недифференцируема в этой точке.

Таким образом, непрерывность функции – необходимое, но не достаточное условие ее дифференцируемости.


Замечание: Производная непрерывной функции не обязательно непрерывна. Если функция имеет непрерывную производную на некотором промежутке Х, то функция называется гладкой на этом промежутке. Если же производная функция допускает конечное число точек разрыва, то такая функция на данном промежутке называется кусочно гладкой.

23. Основные правила дифференцирования функций одной переменной (одно из этих правил доказать).

Производная функции м.б. найдена по схеме:

  1. Дадим аргументу приращение и найдем наращение значений функции .

  2. Находим приращение функции .

  3. Составляем отношение .

  4. Находим предел этого отношения при , т.е. (если этот предел существует).

Основные правила дифференцирования

  1. Производная постоянной равна нулю, т.е. .

Д о к а з а т е л ь с т в о.

При любых и имеем и . Отсюда при любом отношение и, следовательно,

  1. Производная аргумента равна единице, т.е. .

Д о к а з а т е л ь с т в о.

Рассмотрим функцию . При любых и имеем и . Отсюда при любом отношение и, следовательно,

  1. Производная алгебраической суммы конечного числа дифференцируемых функций равна алгебраической сумме производных этих функций, т.е.

.

4. Производная произведения двух дифференцируемых функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго, т.е.

.

Д о к а з а т е л ь с т в о.

Пусть и - дифференцируемые функции. Найдем производную функции по схеме:

  1. Дадим аргументу приращение . Тогда функции и получат наращенные значения и , а функция - значение .

  2. Найдем приращение функции: .

  3. Составим отношение , которое представим в виде: .

  4. Найдем предел этого отношения при , используя теоремы о пределах: