Файл: Практическая работа 1 Сформулируем кратко три основных принципа научного познания действительности.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.05.2024

Просмотров: 17

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Вещество и поле различаются по закономерностям движения

Скорость распространения электромагнитного и гравитационного полей всегда равна скорости света в пустоте (с), а скорость движения частиц вещества всегда меньше с. Однако наличие ядерных полей ликвидирует и эту границу. Для квантов этих полей как раз характерна невозможность движения со скоростью, равной с .

Вещество и поле различаются по степени проницаемости

Вещество мало проницаемо, электромагнитное и гравитационное поля - наоборот.

На уровне микромира и эта граница исчезнет. Для таких частиц, как нейтрино, вещество оказывается весьма проницаемым, с другой стороны, ядерные поля могут обладать очень малой проницаемостью.

Вещество и поле различаются по степени концентрации массы и энергии

Очень большая - у частиц вещества и очень малая - у электромагнитного и гравитационного полей. В микромире и это различие стирается. Ядерные поля обладают огромной концентрацией массы и энергии, и даже кванты электромагнитного поля могут достигать концентраций энергии, значительно превосходящих таковую у частиц вещества.

Вещество и поле различаются как корпускулярная и волновая сущности

Это различие исчезает на уровне микропроцессов. Частицы вещества обладают волновыми свойствами, а непрерывное в макроскопических процессах электромагнитное поле обнаруживает на уровне микромира свой корпускулярный аспект.

Общий вывод:

Различие вещества и поля верно характеризует реальный мир в макроскопическом приближении. Это различие не является абсолютным и при переходе к микрообъектам ярко обнаруживается его относительность. В микромире понятия «частицы» (вещество) и «волны» (поля) выступают как дополнительные характеристики, выражающие внутренне противоречивую сущность микрообъектов.

  1. Микромир – пространственная протяжённость порядка 10-6 см и менее; основные объекты (структурные уровни материи) – молекулы, атомы и составляющие их элементарные частиц; основные типы взаимодействия – электромагнитное, сильное и слабое. 

Также элементарные частицы можно классифицировать следующим образом:

1) По спину: нафермионы(полуцелый спин) ибозоны(целый спин).

2) По времени жизни частицы можно разбить на:

1) стабильные(электрон, протон, фотон, нейтрино);

2) квазистабильные— распадающиеся вследствие электромагнитного и слабого взаимодействий (нейтрон);


3) нестабильные— распадающиеся вследствие сильного взаимодействия (π-мезоны).

3) По массе все частицы разделены на три класса:

  • барионы(тяжелые): протон, нейтрон, гипероны, часть резонансов. Из них стабилен протон. Все они - фермионы. Имеют барионный заряд +1. Участвуют во всех типах взаимодействий.

  • мезоны(средние, промежуточные): пи-мезоны, ка-мезоны и др. Нестабильны. Являются бозонами (нулевой или целочисленный спин). Барионного заряда нет. Участвуют во всех типах взаимодействий. Барионы + мезоны = адроны.

  • лептоны(легкие): мюон, нейтрино, электрон. Мюоны являются фермионами, не участвуют в сильных взаимодействиях и обладают лептонным зарядом.



  1. Классификация элементарных частиц

Элементарными частицами называют фундаментальные, т.е. неделимые, количества вещества или энергии. В соответствии с этим определением проводят наиболее общую классификацию элементарных частиц, которая выделяет элементарные частицы, представляющие собой структурные единицы вещества, и элементарные частицы, передающие фундаментальные взаимодействия и являющиеся квантами соответствующих полей.

Элементарные частицы вещества являются фермионами (т.е. имеют полуцелый спин) и бывают двух типов: кварки– основной строительный материал таких частиц, как протоны, нейтроны и –лептоны, к числу которых относятся электроны, мюоны и нейтрино.

Элементарные частицы, передающие взаимодействие, являются бозонами (обладают целым спином) и бывают четырех типов: гравитоны, передающие гравитационное взаимодействие, фотоны, передающие электромагнитное взаимодействие, слабые бозоны– для слабого взаимодействия иглюоны– для сильного ядерного взаимодействия.

  1. Корпускулярно-волновые свойства частиц

В 20-х годах XX столетия было установлено, что любая частица имеет корпускулярно-волновую природу. Согласно теории Л. де Бройля (1924 г.), каждой частице с импульсом   соответствует волновой процесс с длиной волны λ, т.е. λ = h / p. Чем меньше масса частицы, тем больше длина волны. Для элементарных частиц В. Гейзенберг сформулировал принцип неопределенности, согласно которому невозможно одновременно определить положение частицы в пространстве и ее импульс. Следовательно, нельзя рассчитать траекторию движения электрона в поле ядра, можно лишь оценить вероятность его нахождения в атоме с помощью 

волновой функции ψ, которая заменяет классическое понятие траектории. Волновая функция ψ характеризует амплитуду волны в зависимости от координат электрона, а ее квадрат ψ2 определяет пространственное распределение электрона в атоме. В наиболее простом варианте волновая функция зависит от трех пространственных координат и дает возможность определить вероятность нахождения электрона в атомном пространстве или его орбиталь. Таким образом, атомная орбиталь (АО) – область атомного пространства, в котором вероятность нахождения электрона наибольшая. Волновые функции получаются при решении основополагающего соотношения волновой механики – уравнения Шредингера. (Точное решение получается для атома водорода или водородоподобных ионов, для многоэлектронных систем используются различные приближения). Поверхность, ограничивающая 90–95 % вероятности нахождения электрона или электронной плотности, называют граничной. Атомная орбиталь и плотность электронного облака имеют одинаковую граничную поверхность (форму) и одинаковую пространственную ориентацию. Атомные орбитали электрона, их энергия и направление в пространстве зависят от четырех параметров – квантовых чисел.

ПРАКТИЧЕСКАЯ РАБОТА №3

  1. Пространство – форма сосуществования материальных объектов. Время – порядок последовательной смены явлений и состояний материи.

Естественнонаучные представления о пространстве и времени прошли длинный путь становления и развития. Самые первые из них возникли из очевидного существования в природе твердых физических тел, занимающих определенный объем. Здесь основными были представления о пространстве и времени как о субстанции – нечто относительно устойчивое, то, что существует само по себе и не зависит ни от чего другого (Аристотель, Демокрит).Первая законченная теория пространства – геометрия Евклида. Она была создана примерно 2 тыс. лет назад и до сих пор считается образцом научной теории. Геометрия Евклида оперирует идеальными математическими объектами, которые существуют как бы вне времени, и в этом смысле пространство в этой геометрии – идеальное математическое пространство. Такой взгляд позволил И. Ньютону сформулировать концепцию абсолютного пространства и времени. Абсолютное пространство существует независимо от времени и независимо от наполняющей его материи, остается всегда одинаковым и неподвижным. Абсолютное время при этом течет равномерно и независимо ни от чего, и иначе называется длительностью. Течение абсолютного времени изменяться не может. Время и пространство составляют как бы вместилища самих себя и всего существующего.


Г. Лейбниц рассматривал пространство как порядок сосуществования тел, а время – как порядок отношения и последовательность событий. Это понимание составило сущность реляционной концепции пространства и времени, которая противостояла их пониманию как абсолютных.

Есть концепции (Беркли, Мах и др.), которые ставят пространство и время в зависимость от человеческого сознания, выводя их из способности человека переживать и упорядочивать события, располагать их одно подле другого.

Современное понимание пространства и времени было сформулировано А. Эйнштейном в специальной теории относительности (1905 г.), по-новому интерпретировавшей концепции пространства и времени и давшей им естественнонаучное обоснование.

  1. Тео́рия относи́тельности — физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов.

Переход от классической механики к специальной теории относительности можно представить так:

  • на теоретическом уровне - это переход от абсолютных и субстанциальных пространства и времени к абсолютному и субстанциальному единому пространству - времени,

  • на эмпирическом уровне - переход от относительных и экстенсионных пространства и времени Ньютона к реляционному пространству и времени Эйнштейна.

Специальная теория относительности (СТО) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света (в рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей).

найдено на ru.wikipedia.org

О́бщая теория относительности (ОТО) — общепринятая в настоящее время теория тяготения, описывающая тяготение как проявление геометрии пространства-времени. Предложена Альбертом Эйнштейном в 1915 — 1916 годах.

  1. Гравита́ция (притяже́ние, всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между материальными телами, обладающими массой. В приближении малых по сравнению со скоростью света скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. В квантовом пределе гравитационное взаимодействие предположительно описывается квантовой теорией гравитации, которая ещё не разработана.


Гравитация играет крайне важную роль в структуре и эволюции Вселенной (устанавливая связь между плотностью Вселенной и скоростью её расширения), определяя ключевые условия равновесия и устойчивости астрономических систем. Без гравитации во Вселенной не было бы планет, звёзд, галактик, чёрных дыр. Гравитационное сжатие является основным источником энергии на поздних стадиях эволюции звёзд (белые карлики, нейтронные звезды, чёрные дыры).

«Парадоксы» общей теории относительности

Как и в специальной теории относительности, в ОТО "парадоксы" позволяют не только отвести рассуждения, основанные на так называе­мом "здравом смысле" (обыденном, житейском опыте), но и дать правиль­ное, научное объяснение "парадоксу", который, как правило, является проявлением более глубокого понимания природы. И это новое понима­ние дается новой теорией, в частности, ОТО.




  1. Симметрия в физике — это свойство физических законов, детально описывающих поведение системы, оставаться неизменными (инвариантными) при определенных преобразованиях, которым могут быть подвергнуты входящие в них величины.

Изотропность — это одинаковость свойств физических объектов в разных направлениях. Изотропность и однородность пространства как простейшие виды симметрии появились уже на заре человеческого познания.

Среди пространственно-временных принципов симметрии можно выделить следующие:

  • Сдвиг системы отсчета не меняет физических законов, т.е. все точки пространства равноправны. Это означает однородность пространства.

  • Поворот системы отсчета пространственных координат оставляет физические законы неизменными, т.е. все свойства пространства одинаковы по всем направлениям, иными словами пространство — изотропно. Например, свойства палки не меняются, если ее переворачивать в воздухе. А вот свойства корабля значительно изменятся, если он перевернется в воде, так как на границе раздела воды и воздуха свойства пространства разные. Таким образом, симметрия пространства означает, что в пространстве действия физических законов нет выделенных точек и направлений или что оно однородно.

  • Сдвиг во времени не меняет физических законов, т.е. все моменты времени объективно равноправны. Время однородно. Это означает, что можно любой момент времени взять за начало отсчета. Этот принцип означает закон сохранения энергии, который основан на симметрии относительно сдвигов во времени. Период колебаний маятника «ходиков» не изменится, если отсчитать его в полдень или в полночь, т.е. законы физики не зависят от выбора начала отсчета времени.

  • Законы природы одинаковы во всех инерциальных системах отсчета. Этот принцип относительности является основным постулатом специальной теории относительности (СТО) Эйнштейна. В соответствии с принципом симметрии можно произвести переход в другую систему отсчета, движущуюся относительно данной системы с постоянной по величине и направлению скорости. Например, можно перейти из вагона поезда в машину, если уравнять их скорости.

  • Зеркальная симметрия природы — отражение пространства в зеркале — не меняет физических законов.

  • Фундаментальные физические законы не меняются при обращении знака времени.