Файл: Сегаль В.Ф. Динамические расчеты двигателей внутреннего сгорания.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 19.06.2024

Просмотров: 104

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СЕГАЛЪ

СГОРАНИЯ

2 2

Ш

\ " T

»üâic?"':. . •

V .:»' -

ъ,-

4 Ä .

4L

В. Ф. СЕГАЛЬ

ДИНАМИЧЕСКИЕ

РАСЧЕТЫ

ДВИГАТЕЛЕЙ

ВНУТРЕННЕГО

СГОРАНИЯ

 

mmtAÄ«*C6'‘•-”1rrT'S

 

О Н Т Р о л п гН Ы И

ЛЕНИНГРАД

Э С .З Е М ІД . Я Р

«МАШИНОСТРОЕНИЕ»

1

ЛЕНИНГРАДСКОЕ ОТДЕЛЕНИЕ

1974

УДК 621.43.001.24 кцѵш'о-

J y

9ЛІЗ

С е г а л ь В. Ф. Динамические расчеты двигателей внутрен­ него сгорания. Л., «Машиностроение» (Ленингр. отд-ние), 1974,

248с.

Вкниге рассмотрены вопросы, относящиеся к кинематике криво­ шипно-шатунного механизма и силам, передаваемым его звеньями, включая шейки коленчатого вала, внешней и внутренней уравнове­

шенности, неравномерности крутящего момента и вращения вала двигателей внутреннего сгорания (однорядных, Ѵ-образных, с рас­ ходящимися поршнями, W-образных и звездообразных).

Книга содержит теоретические обоснования методов динамиче­

ских расчетов и конкретные примеры последних

применительно

к перечисленным типам двигателей.

представлены

Все зависимости, необходимые для расчетов,

в монографии с помощью безразмерных параметров, повысивших общность результатов и исключивших затруднения, возникающие при вычислениях с именованными величинами.

Книга предназначена для инженерно-технических работников, занимающихся вопросами дизелестроения; она будет также полезна студентам в этой области.

Табл. 35. Ил. 139. Список лит. 26 назв.

Рецензент инж. Э. М. ГальбацКокин

334 — 143

143-74

038 (01) — 74

 

© Издательство «Машиностроение», 1974 г.


ПРЕДИСЛОВИЕ

Необходимость исследования вопросов кинематики и динамики машин и в том числе двигателей внутреннего сгорания в связи с непрерывным повышением требований к их долговечности и экономичности не вызывает сомнений. Значительно сложнее установить целесообразный объем и содержание книг на эту тему.

Книги, посвященные динамике авиационных, судовых, ста­ ционарных и автотракторных двигателей, начали появляться в СССР в тридцатых годах и, как правило, в качестве учебников ,для втузов. Рассмотрение книг, из которых основные приведены 'в списке литературы, показывает, что современная книга по ди­ намике двигателей внутреннего сгорания (без крутильных коле­ баний) должна иметь следующие разделы:

кинематика кривошипно-шатунного механизма и силы, пере­ дающиеся его звеньями;

внешняя и внутренняя уравновешенность двигателей; неравномерность крутящего момента и вращения вала. Все эти разделы составили содержание настоящей книги. Целью монографии было отразить наиболее рациональные из

имеющихся методов исследования по данным вопросам, изло­ жить результаты новых решений и иллюстрировать весь мате­ риал конкретными числовыми примерами. Для подтверждения изложенного можно отметить следующее:

исследование внешней и внутренней уравновешенности двига­ телей выполнено графическим методом; аналитические способы, рассмотренные в работе [11], как более трудоемкие исключены; уравновешенность четырехвального двигателя с расходящимися поршнями исследована графо-аналитическим путем, оказавшимся

наиболее простым; приведены формулы и графики, упрощающие вычисления,

относящиеся к кинематике механизма с прицепным шатуном; данные для построения векторных диаграмм получаются ана­

литически сразу для шеек и подшипников коленчатого вала без сложных перестроений;

приведены графики для непосредственного определения сред­ них давлений на шатунные и коренные шейки коленчатого вала.

В дополнение

к безразмерным параметрам, использованным

в работах [8, 15

и 23 3, в монографии введены новые параметры

1*

3

pjpz, А (отношение силы инерции первого порядка к наибольшей силе давления газов на поршень), относительные безразмерные крутящий момент и давления на шейки коленчатого вала, повы­ сившие общность результатов расчета.

Вмонографии уделено внимание углам опережения (фазовым углам), определяющим цикл в любом цилиндре по отношению к пер­ вому и дающим возможность определять и проверять порядок работы цилиндров и углы между вспышками.

Предлагаемую монографию можно рассматривать как допол­ нение к трудам [8, 15, 16, 18], не дублирующее их и содержащее теоретические исследования и конкретные примеры динамических расчетов двигателей внутреннего сгорания.

Вуказанных четырех книгах основные величины обозначены

по-разному. В монографии приняты обозначения, близкие к име­ ющимся в работе [16], поскольку эти обозначения удобны.

Автор считает своим долгом выразить благодарность профес­ сорам А. С. Орлину и Н. Н. Иванченко за ценные пожелания, высказанные ими по плану книги, инженерам И. В. Константи­ новой, Г. В. Оглобину и В. Г. Туланову за их помощь в выполне­ нии расчетов, а также инж. Н. М. Шебаловой за выполнение иллюстраций к книге.


ГЛАВА I

КИНЕМАТИКА И ДИНАМИКА ОДНОРЯДНЫХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

1. КИНЕМАТИКА ЦЕНТРАЛЬНОГО КРИВОШИПНО-ШАТУННОГО МЕХАНИЗМА

Кривошипно-шатунный механизм (КШМ) у двигателей вну­ треннего сгорания предназначается для передачи энергии про­ дуктов сгорания в цилиндре коленчатому валу; при этом посту­ пательное движение поршня посредством шатуна вызывает вра­ щение коленчатого вала и соединенных с ним потребителей энер­ гии. На рис. 1.1 показана схема центрального КШМ, у которого оси цилиндра и коленчатого вала пересекаются, а палец поршня располагается на оси цилиндра.

Основной переменной КШМ является угол а поворота криво­ шипа от его начального положения. Перемещение поршня 5 и угол отклонения шатуна от оси цилиндра ß считаются функциями переменной а. Для принятого на рис. 1.1 направления вращения

кривошипа положительное направление ß — против

часовой

стрелки.

 

 

Рассмотрев рис. 1.1, можно записать

 

S = L + R R cos а L cos ß,

 

откуда

 

 

S = R 1 — cosa +

-^- (1 — cos ß)J ,

( U )

где

R_

 

X =

( 1. 2)

 

L ■

 

Безразмерный параметр X является основным и определяет кинематику КШМ; X называют постоянной механизма. Для встре­ чающихся на практике КШМ (табл. 1) X лежит в пределах от 0,16 до 0,36.

Из рис. (1.1) видно, что 5 зависит от углов а и ß. Для того, чтобы представить 5 в виде функции только от угла а, выразим ß

5

Т А Б Л И Ц А t

Элементы ДВС и их безразмерные параметры

 

 

 

 

Вес, кг

 

 

приведенной поступательно­ движущейся массы

­

поршняв п

 

 

приведенной неуравновешен­ вращающейной массыся G

Марка ДВС

пд <?

 

 

 

 

 

248,5/11

 

2,85

2,33

4410/14

(«Шене-

2,06

____

1,24

бек»)

 

 

 

 

4410,5/13 (К-962)

3,76

2,8 *

64СП12/14 (К-161)

4,3

6

3,04 *

44С13/18

 

4,31

3,2 *

64СП15/18 (ЗДС)

4,06

2,37 *

44Н15,5/20,5

9,58

7,85

6,82 **

424НСП16/17

6,52

28,3

6418/22

 

22,8

25,3

17,8 **

4ДС19/30

 

42,1

20,1

34 **

- ~*і

* •'

*

 

4-

84Р24/36 («Букау-

56

 

37 **

Вольф»)

 

 

 

64Н25/34

 

57,5

40 **

 

 

6ЧР27.5/36 («Шко-

95

____

57,9 **

 

 

 

 

да»)

 

106,8

 

78**

64Р30/38 (180-Д)

____

8ДР30/50

 

190

156

140 **

8ДРН30/50

190

156

140 **

64НЗ 1,8/33 (Д-50)

93,2

62 **

64РН36/45 (Г-60)

248

190

6Д39/45 (2Д46)

8ДРН43/61

609

469

482 **

9ДКРН50/110

7ДКРН74/160

5060

-

6ДКРН75/160

4780

 

 

 

вращающейся частишатуна

Числооборотовп, мин/об

ч

Максимальноедав­ лениерг, кгс/см2

а

£

3

 

 

А

 

о

 

 

 

03

 

 

и

 

X

 

 

о

 

 

 

X

 

н

 

 

а*

 

оз

 

 

о

 

1,75 1

1,23

1500

65

2,72

1500

40

60

3,2

1500

40

65

4,2

2

1500

80

60

3,7

1500

80

65

5,62

1500

150

80

9,35

6,56

1200

175

76

— 2200 — 130

17

11,1

750

150

60

25

16,9

500

160

60

 

V*-

 

•*

 

47,5

_____

500

400

52

 

 

 

 

58

40,5

500

450

70

75

412

323

53

72

400

400

50

112

62

300

600

62

112

62

300

750

65

104,7

720

900

55

14688 375 900 75

— 350 1300 60

318191 250 2500 70

— 170 5200 55

— 115 8750 57

4068

2644

115 9000

Безразмерные параметры

^ 1

 

 

I

СО

 

 

§«=С N

's

**1СѵО

 

 

0е|°-

з(

и

 

g| а

II

сГ|сГ*

II

§

 

'S

а р

0,25

~

174

____

0,1

____

____

 

 

162

0,25

0,11

0,108

6

174

0,274

0,106

0,111

3,2

225

0,113

225

0,281

0,065

2,3

164

0,27

0,13

0,106

457

0,1

0,115

68,5

0,257

0,11

0,104

5,25

41,7

0,25

0,098

0,103

 

 

 

с-

*

50

____

0,13

0,120

 

 

 

47,2

0,13

0,08

7,2

18,8

0,12

0,101

33,7

0,13

0,102

25

0,086

0,108

25

0,223

0,097

0,103

85

0,233

0,165

0,205

5,1

25,7

0,237

0,13

30,6

0,115

21,2

0,223

0,125

0,127

17,5

0,12

11,7

0,252

0,244

11,8

 

 

 

 

*Алюминиевый сплав.

**Чугун.



через а. На основании рис. 1.1 имеем

 

L sin ß =

R sin a,

 

откуда, учитывая (1.2), находим, что

 

sin ß —

A, sin a.

(J.3)

Для упрощения вычисления

ß по заданным Я и а

составлена

табл. 2, устанавливающая зависимость угла ß от угла а для встре­ чающихся на практике значений X. Как видно из этой таблицы, угол ß не пре­ вышает 17°.

Обратим внимание на то, что в зависи­ мость между углами ß и а не входят абсолютные размеры R и L; она опре­ деляется только их отношением, т. е. безразмерным параметром X. Поскольку безразмерная форма записи аналитиче­ ских зависимостей физических величин является, как известно, наиболее общей

ипростой, формулу (1.1) также приводят

кследующей безразмерной форме:

 

R = 1 — cos а -

(1 — cosß).

(1.4)

ш

На основании (1.3) и (1.4) составлена

табл. 3,

устанавливающая точную зависи­

 

мость s

от а и X.

 

 

Рис. 1.1. Кинематическая

Для

упрощения

исследования

про­

схема центрального КШМ

цессов,

происходящих в КШМ, необхо­

 

димо располагать не

только табличной,

но и аналитической зависимостями 5 и s непосредственно от а. По­

этому взамен точных

выражений

(1.1) и (1.4)

ограничиваются

приближенными, которые получаются следующим образом.

На основании (1.3)

находят cos ß, который входит в (1.1),

cosß =

l / 4 — А,2 sin2 a.

(1.5)

Разлагая правую часть этого равенства в ряд, будем иметь

cos ß = 1

А,2

.

2

a ■

А4

 

 

sin

 

2-4 sin* a —

( 1. 6)

Так как значения X малы по сравнению с единицей, можно для обычных расчетов в этом ряду ограничиваться двумя первыми членами. Действительно, при X =0,32 и sin a = 1 согласно (1.6)

получаем cos ß = 1 — 0,051 — 0,0013 — . . . Как видим, макси­ мальная погрешность при отбрасывании третьего члена ряда будет около 0,1%. Таким образом, можно принять, что

c o sß ^ 1 — ~ sin2 a«* 1 — -^-(1 — cos2a).

(1.7)

8