ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 22.07.2024
Просмотров: 142
Скачиваний: 0
Приведенная зависимость может быть обобщена иа случай переменных теплофизических свойств [24].
Метод средней температуры [24]. В этом методе ис пользуется особенность нагрева (охлаждения) тела, со стоящая в том, что всегда имеется некоторая изотерми ческая поверхность в теле, температура на которой рав на в каждый момент времени средней температуре тела. При условии Fo^0,5 координата этой плоскости для пластины при граничных условиях второго рода опреде ляется из условия
(б2 |
- 34)/G ö2 = |
0, |
(2.25) |
а решение уравнения |
теплопроводности в этом |
случае |
|
сводится к выражению |
|
|
|
Ч ь , т ) - / „ = - f - |
О |
(2.26) |
|
|
А |
|
Из сравнения условий (2.25) и (2.26) следует, что тем пература в выражении (2.26) является средней темпера турой тела.
В работе [24] показано, что формула (2.25) спра ведлива и при других граничных условиях. Тепловой по ток в этом методе определяется с помощью выражения (2.26) по измеренной температуре в точке я*.
Метод определения теплового потока по изменению температуры поверхности. Если стенку можно рас
сматривать |
как |
полубесконечное |
тело, |
достаточно |
для |
|||
определения |
q |
измерять температуру |
на поверхности |
|||||
[104]. Решение |
уравнения теплопроводности в |
|
этом |
|||||
случае имеет вид |
[104] |
|
|
|
|
|
||
t(X,Т) = |
|
|
Т |
|
|
|
|
|
|
у — |
Ф (Т*) ехр |
4а (т — т*) |
X |
||||
|
2 у па J . |
|
|
|
||||
|
|
|
о |
di* |
|
|
|
|
|
|
|
X |
|
|
|
(2.27) |
|
|
|
|
|
|
|
|
( т - т *)3/2
гдеср(т)—-найденная из опыта зависимость температуры поверхности от времени. Если найти производную темпера туры по координате' на поверхности и подставить ее в за кон теплопроводности, получим выражение для теплового потока на поверхности [104]
4. Зак. 1284 |
49 |
|
т |
|
dt* |
|
|
|
dcp (т*) |
|
|
||
?(т,= w |
lо |
dt* |
(т— т*)1/2 |
||
Определение коэффициента теплообмена при движе |
|||||
нии газа в трубе [13, |
18, 93]. |
Коэффициент |
теплообме |
||
на в нестационарных |
условиях |
определяется |
так же, |
||
как и в стационарных условиях, |
следующим |
выраже |
|||
нием: |
|
|
|
|
|
а,'Н |
|
|
|
(2.28) |
|
В нестационарных случаях необходимо измерять все |
|||||
или некоторые из величин в |
правой части |
выражения |
(2.27) в зависимости от времени. При исследовании ста ционарного теплообмена достаточно определить эти ве
личины для одного |
какого-нибудь момента времени. |
При рассмотрении |
предыдущих методов предполага |
лось, что температура жидкости не зависит от времени и координаты вдоль направления по потоку, а q и ta не зависят от координаты. В общем случае все три пара метра могут зависеть от времени и координат.
Для определения температуры жидкости |
в дюбом |
|
сечении для любого момента времени |
(х, т) |
з работе |
[18] решено одномерное уравнение энергии для средне калориметрической температуры потока при известных начальной температуре, расходе н зависимости теплово го потока на внутренней поверхности трубы q от х и т. Найденная численным методом решения среднекалори метрическая температура принималась равной искомой температуре жидкости tiK.
Для нахождения теплового потока и температуры на внутренней поверхности трубы находилось решение уравнения теплопроводности для стенки трубы. При этом предполагалось, что перетечек тепла по стенке вдоль трубы нет, источники тепла по толщине стенки распределены равномерно, тепловыделение определяется заданной величиной qv. Решение получено методом ко нечных разностей с помощью вычислительной машины. Используя найденные зависимости, можно было по из меренным значениям температуры наружной поверхно сти трубы и тепловыделению qv найти тепловой поток щ температуру на внутренней поверхности. В отличие от
50
первоначальной постановки задачи на этой стадии пред полагалось, что q и tn зависят от времени и не зависят от координаты. Таким относительно сложным расчетным
путем |
находились величины, определяющие в соответ |
||
ствии с выражением (2.28) коэффициент |
теплообмена. |
||
Положительной |
особенностью такой постановки за |
||
дачи |
является |
максимальное приближение к одно |
|
му из |
реальных |
случаев нестационарного |
теплообмена. |
Метод определения нестационарного теплового потока [105, 117]. В работаіх [105, 117] были проведены исследования нестационарного теплообмена цилиндри ческой вырезки из плоскопараллельной пластины и ша ра с потоком жидкости. Первичными эксперименталь ными результатами являлись зависимости температуры образца от времени.
Для нахождения тепловых потоков и коэффициентов
теплообмена' на поверхности образцов были |
получены |
||||
решения уравнения |
теплопроводности |
для |
пластины |
||
[105] и для шара [117]. |
|
неограниченной |
|||
Уравнение теплопроводности для |
|||||
пластины (одномерная задача) имеет вид |
|
||||
|
|
dt |
дЧ |
|
(2.29) |
|
|
дх |
= а ----- |
|
|
|
|
дх2 |
|
|
|
В качестве граничных условий, исходя из опыта, бы |
|||||
ли использованы выражения |
|
|
|||
х = 0 , |
t(0, |
т) = |
А0 [1— ехр (— К0х)] , |
(2.30) |
|
х = д , |
Ң8, |
т) = |
Л6 [1— ехр(— /С6т)] |
|
и начальное условие t (х, 0). = 0.
Применяя преобразования Лапласа, уравнение теплопро водности и граничные условия можно записать в виде
4=о = А I ехр (— S t) |
[1— ехр (— Д » ] dx = А0 ^ |
|
! |
\ |
А0К 0 |
S + К0 ) |
S (S + К 0) ’ |
|
т |
_ |
Л Д б |
|
S(S + K6) ’ |
4* |
51 |
d-t ( X , S) |
5 |
t{x, S ) = 0. |
|
dx2 |
|
|
|
|
|
|
|
Решение дифференциального |
уравнения |
для изобра |
|
жения |
|
|
|
AüK6sh |
|
|
|
t = |
|
|
|
S (S + K6) Sh ( |
j / 1 . 6 J |
h |
|
A0K0sh I |
Ä |
(&— x) |
|
+ '
S (S -f K0) sh
( 1/
Переходя к оригиналу, получим следующее выражение для распределения температуры по толщине пластины:
б — X
t (.V, т) = Аа
sin
sin l/ 4
Ах —
ехр (— а д —
•К ѵ |
|
exp (— К6т) + 2А0 ^ ( —1)" X |
|||
sin |
i |
f |
|
|
п—1 |
|
V |
|
|
|
|
X |
sin |
И-п |
б — X |
ехр |
аК |
|
|||||
■2А6 V |
(-1 )« |
Рп |
sin |
|
ехр |
Л—1 |
|
|
|
б2 |
|
|
|
|
|
|
б — X |
— ! ! ] ( |
- ' ) ' ’ |
4 , 1 |
- V |
sln |
X |
|
|||||
л=1 |
|
|
|
|
|
52