Файл: Ху, Т. Целочисленное программирование и потоки в сетях.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 15.10.2024
Просмотров: 153
Скачиваний: 0
ПРИЛОЖЕНИЕ D
(енцпй P(Gio. (5))
1 2 3 4 5 6 7 8 9 1011 1213141516171819 20 21 22 23 24 25
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
3 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
4 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
5 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
6 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
7 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
8 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
9 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
10 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
11 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
12 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
13 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
14 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
15 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
16 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
17 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
18 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
19 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
20 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
21 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
22 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
23 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
24 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
25 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
26 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
27 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
28 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
29 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
|
|
|
|
|
|
|
ГРАНИ, ВЕРШИНЫ И МАТРИЦЫ |
|
|
|
|
487 |
||||||||
|
|
|
Р (Gjo, |
(8)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
Грани |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Строка |
|
|
|
Yi |
Y2 |
Y3 |
7 4 |
Ys |
Ye |
Y7 |
Y? |
Y9 |
|
Yo |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
1 |
|
|
|
3 |
1 |
4 |
2 |
0 |
3 |
1 |
4 |
2 |
|
4 |
|
|
|
|
|
|
2 |
|
|
|
2 |
4 |
6 |
3 |
0 |
2 |
4 |
6 |
3 |
|
6 |
|
|
|
|
|
|
3 |
|
|
|
2 |
4 |
1 |
3 |
5. |
2 |
4 |
6 |
3 |
|
6 |
|
|
|
|
|
|
4 |
|
|
|
6 |
2 |
3 |
4 |
5 |
6 |
2 |
8 |
4 |
|
8 |
|
|
|
|
|
|
5 |
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
4 |
|
8 |
|
|
|
|
|
|
6 |
|
|
|
9 |
8 |
7 |
6 |
5 |
4 |
3 |
12 |
6 |
|
12 |
|
|
|
|
|
|
7 |
|
|
|
9 |
8 |
2 |
6 |
10 |
4 |
3 |
12 |
6 |
|
12 |
|
|
Вершины |
|
|
|
|
|
|
|
|
|
_ (2, |
|
|
|
|
|
|
|
|||
1. |
(tt) |
|
= |
(8) |
|
|
|
|
1 0 . |
|
*б) |
1) |
|
|
|
|
|
|
||
2. |
(h) |
h) |
= |
(4) |
2 ) |
|
|
|
И . («г, *e) |
= (1, |
1) |
|
|
|
|
|
|
|||
3. |
(t,, |
= |
(2 , |
|
|
|
1 2 . |
(te) |
t7) |
= (3) |
1) |
|
|
|
|
|
|
|||
A . ( h , h ) |
= ( 1 , |
2 ) |
|
|
|
13. |
(f„ |
= |
(1, |
|
|
|
|
|
|
|||||
5. |
(tз) |
|
= ( 6 ) |
|
|
|
|
14. |
(t5, |
|
|
(1, |
1, 1) |
|
|
|
|
|
||
6 . |
(У |
*5) |
= ( 2 ) |
1) |
|
|
|
15. |
(t7) |
|
= |
(4) |
|
|
|
|
|
|
|
|
7. |
(ti, |
= (3 , |
|
|
|
16. |
(t8) |
|
(1) |
|
|
|
|
|
|
|
||||
8 . (^1 , t2, |
*5) = |
(li |
1 » 1 ) |
|
17. |
(£9) |
|
= |
(2) |
|
|
|
|
|
|
|
||||
9- |
(*3 > *5) |
= (1 , |
1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Матрица инцидеиций |
Р (Gio, |
(8)) |
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
Г р ан ь |
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
и |
12 |
13 |
14 |
15 |
16 |
|
|
|
|
|
|
||||||||||||||||
Вершина |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
i |
|
|
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
|
|
2 |
|
|
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
|
|
3 |
|
|
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
|
|
4 |
|
|
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
|
|
5 |
|
|
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
|
|
6 |
|
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
|
|
7 |
|
|
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
|
|
8 |
|
|
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
|
|
9 |
|
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
|
|
10 |
|
|
0 1 1 0 1 0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 . 1 |
1 |
||||||
|
|
И |
|
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
|
|
12 |
|
|
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
|
|
13 |
|
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
|
|
14 |
|
|
1 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
|
|
15 |
|
|
1 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
|
|
16 |
|
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
|
|
17 |
|
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
4 |
0 |
|
|
|
|
|
488 |
ПРИЛОЖЕНИЕ D |
P (G 10, (9))
Грани
Вершины |
P (G io> |
(9)) |
|
|
|
|
|
||||
1. |
((,) |
|
= |
(9) |
|
|
17. (#i, «7) |
= ( 2 ) 1 ) |
|||
2. |
(<1’ |
|
= |
(1 .4) |
|
18. |
(i2, |
/7) |
= (1 . 1 ) |
||
3. (*2> *з) |
= |
(3, |
1) |
|
19. |
(i4, |
i7) |
= |
(3, 1) |
||
4. |
(<з) |
|
= |
(3) |
|
|
2 0 . |
(t6, |
ti) |
= (2 , 1 ) |
|
5 . |
(<2> |
* 3 1 |
<4) = |
(1 , |
1, |
1 ) |
2 1 . |
(i5, |
/7) |
= (1 , 2 ) |
|
6. |
f t , |
г4) |
= |
(1 . |
2 ) |
|
2 2 . |
(i4, |
?7) |
= |
(1. 4) |
7. (?з, г4) |
= |
(1. |
4) |
|
23. |
(i7) |
|
= (7) |
|||
8. |
( f lt |
t5) |
=(4> |
1 ) |
|
24. |
(«!, |
f8) |
= (1 . 1 ) |
||
9. |
(«2, |
fs) |
= |
(2 , |
1 ) |
|
25. |
(<5, |
tg, |
t8) = |
(l. 1 . |
10. |
(<4, |
f3, |
*5) = |
(1 . |
1 - |
1 ) |
26. |
(г4, г7, |
*8') = |
(1 > 1 ’ |
|
11. |
(<4, |
ts) |
= |
(1 . |
1 ) |
|
27. |
(г7, г8) |
= |
(3, 1) |
|
12. |
(fj, |
i6) |
= |
(3, |
1) |
|
28. |
(*a, |
t8) |
= (1 . 2 ) |
|
13. |
(fj, |
i2, |
* e)= (l. |
1 . |
1 ) |
29. |
(ts, |
i8) |
= |
(1 ,3 ) |
|
14. («з- *e) |
= ( 1 , |
1 ) |
|
30. |
(ti, |
t&) |
= (1 . 4) |
||||
15. |
(tj, |
<6) |
= |
(1, |
3) |
|
31. |
((e) |
|
= |
d) |
16. |
((5, |
<e) |
= |
(1, |
4) |
|
|
|
|
|
|
|
|
|
|
ГРАНИ, ВЕРШ ИНЫ И МАТРИЦЫ |
|
|
|
|
|
|
489 |
||||||||||
Матрица инциденций P(Gk), |
(9)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
Г р а н ь |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
19 |
20 |
21 |
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
И 12 13 |
14 |
15 |
16 |
17 |
||||||
В е р ш и н а |
N . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
3 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
4 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
5 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
6 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
7 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
I |
8 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
9 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
10 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
i |
И |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
12 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
13 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
14 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
15 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
16 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
17 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
18 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
19 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
20 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
21 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
22 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
23 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
24 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
25 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
26 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
27 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
28 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
29 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
30 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
31 |
1 1 |
1 1 1 1 1 1 1 1 1 |
1 1 |
1 |
1 |
А 1 1 1 1 0 |