Файл: Ху, Т. Целочисленное программирование и потоки в сетях.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 15.10.2024
Просмотров: 152
Скачиваний: 0
480 |
П Р И Л О Ж Е Н И Е D |
|
|
|
|
||||
р (G„ (8)) |
|
|
|
|
|
|
|
|
|
Грани |
|
|
|
|
|
|
|
|
|
Строка |
Yi V2 Уз У4 Vs |
Ye |
|
Y* |
Yo |
||||
|
|
|
|
|
|
|
|
|
|
1 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
2 |
1 |
3 |
2 |
1 |
3 |
2 |
4 |
4 |
3 |
1 2 |
3 |
4 |
5 |
6 |
7 |
8 |
8 |
|
4 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
10 |
10 |
5 |
4 |
8 |
12 |
7 |
2 |
6 |
10 |
14 |
14 |
6 |
11 4 |
6 |
8 |
1 0 |
1 2 |
5 |
16 |
16 |
|
7 |
16 |
5 |
12 |
10 |
8 |
15 |
4 |
20 |
20 |
Вершины
1. |
(fj) |
|
=(8) |
|
|
|
11. |
(*!,*.) = |
(2,1) |
|
|
|
|||||
2. |
(<2) |
t3) |
= |
(4) |
|
|
|
12. |
(t2,t„) = |
( l,l) |
|
|
|
||||
3. |
(tu |
= (2 ,2 ) |
|
|
13. |
(t$, te) = |
(1,2) |
|
|
|
|||||||
4. |
(t2, |
/3) |
= (1 ,2 ) |
|
|
14. |
(fl t *7) = |
( l,l) |
|
|
|
||||||
5. |
(г4) |
г5) |
= (2 ) |
|
|
|
15. |
(i5, <7) = |
(2 ,1) |
|
|
|
|||||
6 . |
(«!, |
= (3 ,1 ) |
|
|
16. |
(t3, i7) = |
(1, 2) |
|
|
|
|||||||
7. |
(«1 , «2, t5) = |
(l.l, 1) |
|
|
17. |
(t6,t7) —(2,2) |
|
|
|
||||||||
8. |
(i3, |
*s) |
= (1 ,1 ) |
|
|
18. |
(t7) |
= (5) |
|
|
|
|
|||||
9. |
(f2, |
ti) |
= (1 ,3 ) |
|
|
19. |
(i8) |
= (1) |
|
|
|
|
|||||
10. |
(h) |
|
= |
(7) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Матрица инциденций P (G9, (8)) |
|
|
|
|
|
|
|
|
|
|
|||||||
Грань |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
||
B epunm a^\^ |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
1 |
|
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
|
2 |
|
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
|
3 |
|
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
|
4 |
|
1 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
|
5 |
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
|
6 |
|
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
|
7 |
|
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
|
8 |
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
|
9 |
|
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
|
10 |
|
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
|
11 |
|
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
|
12 |
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
|
13 |
|
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
|
14 |
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
|
15 |
|
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
|
16 |
|
1 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
|
17 |
|
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
|
18 |
|
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
|
19 |
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
482 |
|
|
|
ПРИЛОЖЕНИЕ D |
|
|
|
|
||||
P(G3,3, |
(1,0)) |
|
|
|
|
|
|
|
|
|
|
|
Грани |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V* |
|
Vo, 1 |
Vi, 1 |
72, 1 70,2 |
71,2 72, 2 |
Vo |
|||
Строка |
|
|
Ч, 0 72,0 |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
2 |
1 |
1 |
0 |
2 |
2 |
|
1 |
0 |
2 |
2 |
|
|
2 |
1 |
0 |
2 |
1 |
0 |
|
2 |
1 |
2 |
3 |
|
|
2 |
1 |
2 |
1 |
0 |
1 |
0 |
2 |
2 |
|
4 |
|
|
6 |
3 |
4 |
4 |
4 |
2 |
2 |
2 |
6 |
|
5 |
|
|
6 |
3 |
2 |
2 |
2 |
4 |
4 |
4 |
6 |
|
Вершины |
|
|
|
|
|
|
|
|
|
|
|
|
1 . |
($i, 0) |
|
=(1) |
|
8 . |
Go, |
1» |
G, 2) == d . l ) |
|
|||
2 . (G , 0) |
|
= (2) |
|
9. |
Go, |
2> |
G, 2) == ( 2 ,1 ) |
|
||||
3. |
Go, |
1 , |
|
= ( 2 ,1 ) |
|
10. |
Gi, |
1’ |
G , |
2) == ( 2 ,2 ) |
|
|
|
G , 1) = |
|
|
11. G 2, 1» G , 2) == ( 1 . 1 ) |
|
|||||||
4 . G i, 1, G , l) == (2 ,1 ) |
|
|
||||||||||
5 . |
Go, |
1 , |
*2, |
= (1 . 2 ) |
|
12 . G i, 2» G , 2) == ( 2 ,1 ) |
|
|||||
6. |
l) = |
|
|
13. |
Go, |
I ’ |
G , |
2) == ( 2 ,2 ) |
|
|||
G i, |
i . |
*o, 2)== (1 . 1 ) |
|
|
||||||||
7. |
(G , |
1» |
|
= ( 2 , 2 ) |
|
1 4 . |
Go, |
2i |
G , |
2) == ( 1 . 2 ) |
|
|
|
<0, 2) = |
|
|
|
|
|
|
|
|
Матрица инциденций Р (G3, 3, (1,0))
Грань
|
1 |
2 |
3 4 5 |
6 7 8 9 10 и 12 13 |
||||||||||
Вершина |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
1 |
1 |
|
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
1 |
1 |
|
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
3 |
1 |
1 |
|
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
4 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
|
5 |
0 |
1 |
|
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
6 |
1 |
1 |
|
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
7 |
0 |
1 |
|
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
8 |
1 |
1 |
|
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
9 |
0 |
1 |
|
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
10 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
|
1 1 |
1 |
1 |
|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 2 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
|
13 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
|
14 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
Г 1 |
0 |
1 |
0 |
ПРИЛОЖЕНИЕ D
|
;енций |
P(G 10, |
(0)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
И 12 |
13 14 15 16 17 18 19 |
20 21 |
||||||||
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
3 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
4 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
5 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
6 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
7 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
8 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
9 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
10 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
11 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
13 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
14 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
15 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
16 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
17 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
18 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
19 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
20 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
21 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
22 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
23 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
24 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
25 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
26 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
27 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
28 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
29 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
30 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
31 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
32 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
33 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
34 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
35 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
36 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
37 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
38 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
39 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
40 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |