Файл: Министерство образования и молодежной политики Свердловской области государственное автономное профессиональное образовательное учреждение Свердловской области Нижнетагильский железнодорожный техникум.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 16.10.2024

Просмотров: 27

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Проверка изоляции с помощью мегомметра производится как при новом включении, так и при каждой плановой проверке устройства.


Рис 2. Схема установки для испытания изоляции вторичных цепей повышенным напряжением переменного тока.
2.3. Проверка изоляции между фазами
При проверке изоляции между фазами в токовых цепях, где имеются двухобмоточные реле с обмотками, включенными в разные фазы (например, реле сопротивления), необходимо учитывать, что они имеют пониженную электрическую прочность изоляции между обмотками. Поэтому изоляция между цепями в этом случае должна проверяться мегомметром на напряжение 500 В.

Величина сопротивления изоляции, какой бы большой она ни была, недостаточно характеризует состояние изоляции. Поэтому, кроме измерения сопротивления изоляции, проверяется ее электрическая прочность, т. е. способность противостоять повышенному напряжению. Поскольку при измерении изоляции сопротивлением 1 МОм напряжение на зажимах мегомметра 1000 В вследствие падения напряжения в его внутреннем сопротивлении уменьшается примерно в 2 раза ниже его номинальной величины (до 450 В), он не может быть использован для испытания прочности изоляции.

Испытание электрической прочности изоляции относительно «земли» производится при новом включении и периодически 1 раз в 3—4 года во время плановых проверок. Испытание производится переменным напряжением 1000 В в течение 1 мин по схеме, показанной на рисунке 12. В этой схеме используется трансформатор напряжения ТН, например, типа НОСК, мощностью 200—300 ВА. Регулирование напряжения осуществляется потенциометром R1 подключенным с первичной стороны ТН. Вместо потенциометра можно использовать автотрансформатор. Для уменьшения величины тока в случае пробоя изоляции служит ограничивающее сопротивление R2 порядка 1000 Ом. Напряжение, прикладываемое к изоляции, измеряется вольтметром V, последовательно с которым включено ограничивающее сопротивление R3. Ток, проходящий в испытуемой цепи, измеряется с помощью миллиамперметра, обмотка которого нормально зашунтирована кнопкой Кн. Миллиамперметр вводится в цепь нажатием кнопки только на момент производства замера. Благодаря этому предотвращается его перегрузка большим емкостным током при подключении к испытательной установке контрольных кабелей значительной длины.


Все цепи, которые должны быть испытаны, подключаются к испытательной установке. Снимаются все заземления, установленные нормально в испытываемых цепях. Из схемы исключаются или закорачиваются все устройства, не рассчитанные на испытательное напряжение 1000 В (аккумуляторные батареи, полупроводниковые приборы, электронные лампы и т. п.). После подготовки испытательной схемы напряжение от установки плавно поднимают до 500 В и некоторое время держат на таком уровне. При этом миллиамперметром измеряют ток в цепи, осматривают всю испытательную аппаратуру. Если при этом не замечено толчков напряжения, разрядов, искр, поднимают напряжение до 1000 В, держат в течение 1 мин, измеряют ток нагрузки ТН, а затем плавно снижают напряжение до нуля.

Если во время проверки произойдет пробой изоляции, напряжение резко снизится, а ток в проверяемой цепи увеличится.

До и после испытания электрической прочности изоляции измеряют ее сопротивление мегомметром 1000—2500 В. Изоляция считается выдержавшей испытание, если при напряжении 1000 В не отмечалось пробоев, искр, резких бросков напряжения, а величина сопротивления изоляции после испытания не снизилась.

Если во время испытаний изоляция будет пробита, необходимо найти и выделить поврежденный участок, а затем повторить испытание.

Для испытания прочности изоляции относительно «земли» и между несвязанными цепями применяется также мегомметр на 2500 В

При испытании изоляции повышенным напряжением необходимо соблюдать правила техники безопасности. Все места, куда может быть подано испытательное напряжение, должны быть ограждены, или около них должны находиться люди для предупреждения об опасности.


3. ВИДЫ ПОВРЕЖДЕНИЙ КАБЕЛЬНЫХ ЛИНИЙ СИГНАЛИЗАЦИИ, ЦЕНТРАЛИЗАЦИИ И БЛОКИРОВКИ
3.1. Виды повреждений
Повреждения в трехфазных кабельных линиях (КЛ) могут быть следующих видов:

  • замыкание одной жилы на землю;

  • замыкание двух или трех жил на землю либо двух или трех жил между собой;

  • обрыв одной, двух или трех жил без заземления или с заземлением как оборванных, так и необорванных жил;

  • заплывающий пробой, проявляющийся в виде КЗ (пробоя) при высоком напряжении и исчезающий («заплывающий») при номинальном напряжении.

Характер повреждения определяют с помощью мегомметра. Для этого с обоих концов линии проверяют:

  • сопротивление изоляции каждой жилы кабеля по отношению к земле (фазная изоляция), сопротивление изоляции жил относительно друг друга (линейная изоляция);

  • целостность токоведущих жил.


3.2. Методы определения зон повреждения кабельных линий
Выбор метода определения места повреждения кабеля зависит от характера повреждения, места прокладки и переходного сопротивления в месте повреждения. При повреждении КЛ ориентировочно определяют зону (место локализации) повреждения, и после этого различными методами уточняют место повреждения на трассе. Для более точного определения зоны повреждения поиск желательно выполнять с одного конца КЛ несколькими методами. Если такая возможность отсутствует, более точный результат дает поиск одним методом с обоих концов кабеля.

Для поиска зоны повреждения используют:

  • метод прожигания изоляции (разрушающий метод),

  • импульсный метод;

  • метод колебательного разряда;

  • метод петли;

  • емкостный метод.

Метод прожигания изоляцииВ этом случае устанавливают место, где сопротивление между жилами или между жилой и оболочкой будет минимальным. Для уточнения места повреждения необходимо снизить переходное сопротивление до минимального предела. Для этого при помощи генератора высокой частоты или трансформатора выполняют прожигание изоляции. Процесс прожигания протекает по-разному, в зависимости от характера повреждения и состояния кабеля. Обычно через 15 – 20 с сопротивление уменьшается до нескольких десятков Ом. При увлажненной изоляции процесс проходит более длительно, и сопротивление удается уменьшить только до 2000 – 3000 Ом. В муфтах процесс прожигания кабеля проходит более длительно, иногда несколько часов, причем сопротивление резко меняется: то снижается, то снова возрастает, – пока не установится процесс, и сопротивление не начнет снижаться устойчиво. Это разрушающий метод определения места повреждения кабеля.


Импульсный метод применяется для определения зоны повреждения кабеля при переходном сопротивлении до 150 Ом в любых случаях, кроме заплывающего пробоя. Метод основан на измерении интервала времени между моментами подачи зондирующего импульса переменного тока и приема отраженного импульса от места повреждения. Скорость распространения импульсов в КЛ высокого и низкого напряжения – величина постоянная и равна V=160 м/мкс.

Измерения производятся рефлектометрами (например, РЕЙС-105Р). На экране прибора имеется линия масштабных отметок и линия импульсов. По форме отраженного импульса можно судить о характере повреждения. Отрицательное значение отраженный импульс имеет при КЗ, положительное – при обрыве жил.

Метод колебательного разряда применяется при заплывающих пробоях кабелей. Для измерения на поврежденную жилу от испытательной установки подается напряжение, которое плавно поднимается до напряжения пробоя. В момент пробоя в кабеле возникает разряд колебательного характера. Период колебаний определяет расстояние до точки повреждения, так как электромагнитная волна распространяется в кабеле с постоянной скоростью. Измерения выполняются рефлектометрами.

Метод петли основан на измерении сопротивлений при помощи моста постоянного тока. Применение метода возможно при повреждении одной или двух жил кабеля и при наличии одной неповрежденной жилы. При повреждении трех жил можно использовать жилу рядом проложенного кабеля. Для этого поврежденную жилу накоротко присоединяют к целой жиле кабеля, образуя петлю. К противоположным концам жил присоединяют регулируемые сопротивления моста.

Сопротивление жилы кабеля прямо пропорционально его длине, поэтому расстояние до точки повреждения, м:

К недостаткам этого метода следует отнести большие затраты времени, меньшую точность, необходимость устанавливать «закоротки». Поэтому метод «петли» сейчас вытесняется другими методами: емкостным, импульсным методами, методом колебательного разряда и другими.

Методы непрерывно совершенствуются.

Емкостный метод применяется для определения расстояния от конца линии до места обрыва одной или нескольких жил КЛ путем измерения емкости кабеля. Метод основан на измерении емкости оборванной жилы с помощью моста переменного или постоянного тока, так как емкость кабеля зависит от его длины. При обрыве жилы кабеля без заземления измеряется емкость оборванной жилы с обоих концов.


После определения зоны повреждения в этот район для определения места повреждения направляется оператор, который использует акустический, индукционный метод или метод накладной рамки.

Акустический метод. Сущность акустического метода состоит в создании в месте повреждения искрового разряда и прослушивании на трассе звуковых колебаний, вызванных этим разрядом над местом повреждения. Этот метод применяют для обнаружения на трассе всех видов повреждения с условием, что в месте повреждения может быть создан электрический разряд и это место ориентировочно известно. Для возникновения устойчивого разряда необходимо, чтобы величина переходного сопротивления в месте повреждения превышала 40 Ом.

Слышимость звука на поверхности земли зависит от глубины залегания кабеля, плотности грунта, вида повреждения и мощности разрядного импульса. Возможная глубина прослушивания колеблется от 1 до 5 м. Применять этот метод для открыто проложенных кабелей, кабелей, проложенных в каналах и в туннелях, не рекомендуется, так как из-за хорошего распространения звука по металлической оболочке кабеля можно допустить большую ошибку в определении места повреждения.

В качестве генератора импульсов применяется кенотрон с дополнительным включением в схему высоковольтных конденсаторов и шарового разрядника. Вместо конденсаторов можно использовать емкость неповрежденных жил кабеля. В качестве акустического датчика используют датчики пьезомагнитной или электромагнитной системы, преобразующие механические колебания грунта в электрические сигналы, поступающие на вход усилителя звуковой частоты. Над местом повреждения сигнал наибольший.

Индукционный метод применяют для непосредственного отыскания мест повреждения кабеля на трассе:

  • при замыкании изоляции жил между собой или на землю;

  • при обрыве с одновременным пробоем изоляции между жилами или на земле;

  • для определения трассы и глубины залегания кабеля;

  • для определения местоположения соединительных муфт.

По этому методу на поверхности земли с помощью приемной рамки фиксируют изменения электромагнитного поля над кабелем при пропускании по нему тока от долей ампера до 20 А (звуковой частоты 800÷1200 Гц). Диапазон определяется в зависимости от наличия помех и глубины залегания кабеля. ЭДС, наводимая в рамке, зависит от распределения тока в кабеле и взаимного пространственного расположения рамки и кабеля. Зная характер изменения поля, можно по ориентации рамки определить трассу прохождения и место повреждения кабеля.