ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 18.10.2024

Просмотров: 123

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Т а б л и ц а 1.6

Показатели развития электрических сетей ТЕРСО

 

Протяженность линий электропередачи, км

Число

Установ-

Напряжение

Воздушные

Кабельные

под-

ленная

В одно-

 

В одно-

 

стан-

мощ-

сети, кВ

 

 

 

 

ций,

ность,

цепном

По трассе

цепном

По трассе

 

 

шт.

МВ А

 

исчислении

 

исчислении

 

 

 

 

 

 

500

4054

2216

19

75 790

275

2484

1275

952

350

44

54 880

154

6287

3102

783

302

164

45 140

66

15 044

7825

5657

2999

1271

61 788

Ниже 66 кВ

373

306

1854

1378

 

 

шено 4–5 цепей разного напряжения. При сооружении КЛ нередко в одной траншее прокладывают 2–3 KЛ. Указанное объясняется стремлением максимально использовать выделенную трассу.

Широко используются КЛ. Так, если для энергокомпаний всей страны доля протяженности КЛ от общей на уровне 2000 г. составила 10,9%, то для ТЕРСО – 24,7%, а для Токио – 89,3%.

Высокий уровень токов коротких замыканий (КЗ) является следствием сосредоточения на территории, обслуживаемой ТЕРСО, большой установленной мощности электростанций, а также значительной «плотности» электрической сети, при которой линии электропередачи не создают значительных реактансов, ограничивающих уровень токов КЗ. Указанная особенность определила широкое применение «тяжелых» выключателей, рассчитанных на 63 кА.

Помимо обычных требований к электротехническому оборудованию (надежность, удобство эксплуатации, достаточный ресурс и др.) очень важным является требование минимизации размеров, относящееся как к коммутационной аппаратуре, так и к силовым трансформаторам напряжением до 500 кВ включительно. Это требование продиктовано условиями сооружения закрытых и подземных подстанций в Токийском мегаполисе. Такой крупнейшей полуподземной подстанцией будет ПС 500 кВ Shin-Toyosu. Подстанция имеет пять этажей, из которых один этаж располагается над землей. На площади 16 тыс. м2 устанавливаются две группы АТ 500/275 кВ мощностью 1500 МВ А, два шунтирующих реактора (ШР) по 300 Мвар, 10 ячеек КРУЭ 500 и 275 кВ. Выключатели 500 кВ приняты с одним разрывом; питающие КЛ 500 кВ приняты с изоляцией из сшитого полиэтилена.

Важное значение в электрических сетях ТЕРСО придается мониторингу состояния оборудования, что позволяет выявлять дефекты на ранних стадиях возникновения и контролировать динамику их развития.

29


Электроснабжение такого крупного мегаполиса, как Токио, – сложная техническая задача. Опорная сеть города формируется и развивается с использованием самых высших напряжений электрической сети: 275–500–1000 кВ. Надстройкой к сети 275 кВ явились первые объекты 500 кВ, ввод которых в работу был осуществлен в 1960-е годы. В 2003 г. потребители Токио получали электроэнергию от 11 ПС 500 кВ, в стадии строительства находится еще одна ПС этого напряжения. Трудности с новыми трассами ВЛ 500 кВ постоянно возрастают, и уже в 1970-х гг. была выявлена целесообразность создания передающих систем на напряжении 1000 кВ.

В конце 1980-х гг. было начато строительство ВЛ кольцевой сети напряжением 1000 кВ. В отчетном году в работе находился двухцепный транзит 1000 кВ АЭС Касивадзаки Карива – ПС Ниши Гунма – ПС Син Имахи – ПС Минами Иваки (северная часть кольцевой сети). На ВЛ 1000 кВ использована конструкция фазы из восьми сталеалюминиевых проводов сечением 810 мм2. С целью снижения шума от работающих ВЛ (корона) на отдельных участках использовано сечение 960 мм2 × 8. На части ВЛ, временно работающих на напряжении 500 кВ, подвешена половина токоведущей части (810 мм2 × 4). На отдельных ВЛ 1000 кВ средняя высота двухцепных опор составила 97–120 м, а длина пролетов – 550–650 м.

Энергокомпания Южной Кореи (КЕРСО) занимает передовые позиции в развитии электроэнергетики Азии. Основное направление развития сетевого хозяйства страны и формирование основной сети энергосистемы в последние десятилетия осуществлялось с использованием номинального напряжения 345 кВ, получившего значительное развитие во всех частях страны. В меридиональном направлении общая протяженность действующих ВЛ 345 кВ составляет 313 км, т. е. ВЛ пересекают всю территорию страны. То же относится к ВЛ 345 кВ, проходящим в широтном направлении.

Получение коридоров для сооружения новых ВЛ высокого напряжения весьма затруднено. Это, а также высокие темпы роста спроса на электроэнергию явились основными факторами, определившими введение новой, более высокой ступени напряжения в сети переменного тока: 765 кВ. В отдельных случаях ВЛ 765 кВ сооружаются по трассам демонтируемых ВЛ 66 кВ. Впервые в мире строятся двухцепные ВЛ 765 кВ.

В2004 г. переведен на номинальное напряжение ряд ранее построенных участков ВЛ 765 кВ, эксплуатация которых в течение нескольких лет осуществлялась на напряжении 345 кВ.

Впоследние годы наблюдается быстрый рост потребления электроэнергии в Китае – втором в мире производителе электроэнер-

гии. Полное потребление электроэнергии в 2004 г. составило 2090 TВт ч, что на 11% выше, чем в предшествующем году. Общая протя-

30



женность ВЛ 110 кВ и выше составила в 2004 г. 598,9 тыс. км в одноцепном исчислении, в т. ч. 220 кВ – 115,2 тыс. км. Основная сеть переменного тока энергосистемы КНР строится с использованием ВЛ номинальных напряжений 330 и 500 кВ, общая протяженность которых составляет 30,9 тыс. км. В настоящее время заканчивается строительство первой электропередачи напряжением 750 кВ Manpig — Lanzhou.

Дальнейшее развитие получит использование электропередач постоянного тока ±500 кВ, обеспечивающих выдачу мощности ряда строящихся и перспективных ГЭС в основные промышленные центры страны.

Крупнейшим энергообъединением Северной Америки являются параллельно работающие энергосистемы США, Канады и Мексики. Основу объединения составляет энергетика США. Основные показатели энергообъединения в 2001 г.:

Восток США и Канада: производство электроэнергии – 2950 млрд кВт ч, максимум нагрузки – 483 ГВт, установленная мощность электростанций – 722 ГВт;

Запад США, Канада и Мексика: производство электроэнергии – 764 млрд кВт ч, максимум нагрузки – 128 ГВт, установленная мощность электростанций – 158 ГВт.

Вэнергосистемах США используются две системы напряжений переменного тока: 115–230–500 кВ и 156–345–765 кВ. Первая преимущественно используется в восточной части страны, а вторая –

вцентральной и западной частях. Энергокомпании США не проводят твердой технической политики в области систем напряжений. Весьма распространена трансформация мощности 500/345 кВ. Сеть 765 кВ в последние годы развивается весьма ограниченно.

Всередине текущего десятилетия общая протяженность магистральных линий электропередачи (230 кВ и выше) составила около 330 тыс. км, из них по территории США около 245 тыс. км, в т. ч. напряжением 230 кВ – 116,9 тыс. км, 345 кВ – 79,2, 500 кВ – 41,1, 765 кВ – 3,9, постоянного тока 400–500 кВ – 3,5 тыс. км.

Высокий уровень развития электрических сетей не исключил

впоследние годы ряда крупных погашений в энергосистемах США. Анализ аварийных ситуаций показывает, что конфликты между надежностью и коммерческими целями в практике США решаются, как правило, в пользу высокой надежности.

Крупнейшей в Южной Америке является энергосистема Аргентины. Высшее напряжение электрической сети – 500 кВ. По состоянию на начало 2004 г. общая протяженность ВЛ 500 кВ составила около 10 тыс. км, а количество подстанций – 28. Значительному развитию ВЛ 500 кВ способствовала их относительно невысокая удельная стоимость. Это определяется благоприятными условиями

31


прохождения ВЛ 500 кВ по аргентинской пампе (отсутствие лесов, болот, минимальное количество угловых опор, отсутствие необходимости сооружения дорог для строительства ВЛ и др.).

В2000 г. в работу введена межгосударственная (между Аргентиной и Бразилией) ВЛ 500 кВ пропускной способностью 1000 МВт. На стороне Аргентины линия присоединена к электрической сети

счастотой 50 Гц, на стороне Бразилии – 60 Гц. Преобразовательная

ПС 50/60 Гц находится в г. Garabi (Бразилия). Номинальная мощность преобразовательной подстанции 2 × 550 МВт.

Вэнергосистеме Бразилии для выдачи мощности крупнейшей в мире ГЭС Итайпу (12,6 млн кВт) используется напряжение 750 кВ, а также ППТ высокого напряжения.

Вэнергосистеме Бразилии намечена реализация трех крупных проектов развития сети 500 кВ (2,9 тыс. км). Общая протяженность ВЛ 500 кВ по стране при этом достигнет 19 тыс. км.

Области применения ППТ носят традиционный характер: транспорт электроэнергии на большие расстояния, связь электрических сетей с разными номинальными частотами, секционирование сетей энергосистем с целью повышения надежности работы объединения, пересечение больших водных пространств.

Впоследние годы техника постоянного тока в электроэнергетике развивается по двум направлениям:

сооружение ППТ, предназначенных для передачи энергии на достаточно большие расстояния;

создание так называемых вставок постоянного тока (ВПТ) для связи примыкающих друг к другу систем с различными номи-

Т а б л и ц а 1.7

Характеристика ряда крупных электропередач постоянного тока

Название электропередачи

Пропуск-

Напря-

Длина линии, км

ная способ-

жение,

воз-

кабель-

или вставки (страна)

ность, МВт

кВ

душной

ной

 

Кабора-Басса (Мозамбик) – Аполло

1920

±533

2×720

 

(ЮАР)

 

 

 

 

 

Инга-Шаба (Заир)

1120

±500

1630

 

Норвегия – Дания (через Скагеррак)

1000

±500

113

127

Нельсон Ривер – Виннипег (Канада)

2×1620

±450

2×900

 

Бонневиль – Калифорния (США)

1400

±400

1362

 

Выборг (СССР) – Финляндия

1420

±85

 

 

Швеция – Финляндия

500

±200

35

200

Сакума (Япония)

300

±125

 

 

Шин-Шинано (Япония)

300

±125

 

 

Кингснорт – Лондон (Великобритания)

640

±266

82

32