Файл: Виглин, С. И. Генераторы импульсов автоматических устройств учеб. пособие.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.10.2024
Просмотров: 134
Скачиваний: 0
статочно небольшого изменения уровня Es0 или Ucu, чтобы лампа открылась в момент прихода предыдущего ^ n - i или последующего / п + 1 импульса. Это приводит к неустойчивой работе делителя час тоты. Следовательно, колебания питающих напряжений не позво ляют получить в одном каскаде как угодно большого коэффици ента деления. На практике для блокииг-генератора с отрицатель ной сеткой
Ямакс = 8 — 1 0 .
В схеме с положительной сеткой |
скорость разряда возраста |
||
ет, поэтому устойчивая работа делителя |
обеспечивается |
при |
|
большем коэффициенте деления. Для этой |
схемы |
|
|
^макс — 15 |
20. |
|
|
При практическом использовании делителей частоты часто бы вает недостаточно одного каскада деления, так как требуемый коэффициент деления п может достигать нескольких десятков или сотен единиц. Тогда делители частоты включаются последователь но. Пример такой схемы с четырьмя делителями показан на рис. 17.7. Временные графики, иллюстрирующие процессы в схеме, приведены на рис. 17.8.
МЗАРЦЕБЫЙ |
|
JFSYXC/NOPTW - |
УКОРАШМЮ- |
РОРМРУЮ- |
||||
ГЕНЕРАТОР |
|
#T/T/ |
АГРАМ- |
UTIRG ИЕ/?Л |
|
|
||
|
|
|
|
|
||||
/5*114 |
|
"2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/-II |
|
2-* |
|
|
|
|
|
|
ДЕМТЕ/76 |
|
|
|
|
ДЕ/?Г//ПЕ/ГГ> |
//ЕМЛ?Е/Гй |
||
/?, -5-/ |
|
|
|
|
|
|
|
Л?-?*/ |
|
|
|
|
4 |
|
|
1/ |
|
Рис. 17.7. Функциональная схема |
многокаскадного |
делителя |
||||||
|
|
|
частоты. |
|
|
|
||
Общий коэффициент деления |
равен |
|
|
|
||||
_ |
Г4 |
7, |
Т2 |
Т, |
' |
Tt |
|
|
И |
гр |
гр |
• гр |
гр |
• |
гр |
Tl\ fl2 |
tl% ПЦ, |
|
1 о |
7 о |
' 1 |
'г |
|
1з |
|
|
где п\, п2, п3 , п4 — коэффициенты деления соответствующих кас кадов.
142
... Так как-периоды колебаний делителя Го, Т\, Т2, Т3, ТА кратны друг.. Другу, то в момент срабатывания последнего каскада деле ния, очевидно, вырабатываются импульсы и во всех остальных каскадах. Этот момент и принят за начало отсчета времени на графиках (рис. 17^8).
'1 |
Растяншь/й |
|
INI |
III III I I I I I I I I I м м м м м им I I I I I I I |
t |
||||||
|
Г |
1 |
1 |
1 |
1 |
1 |
1 |
t |
|
Сжатый mcu/maff |
|
ММ III I I I I I I I |
|
||||
\\ U |
Ml Mil М И Н И Н |
I |
||||||
1 1 1 1 |
1 |
L |
1 |
1 |
1 |
1 |
t |
|
|
Гу— |
Т 1 |
|
|||||
|
|
3=п372 —- |
|
|
|
|
|
|
t
'*Т-•} т
Pnc . 17.8. Графики, иллюстрирующие процессы в схеме многокаскадного делителя частоты.
В реальных устройствах возможна нестабильность срабатыва ния каждого каскада деления и сдвиг импульсов во времени, свя занные с конечной крутизной фронта запускающих импульсов. Эта временная ошибка в положении импульсов накапливается в каждом каскаде и достигает наибольшей величины в последнем каскаде деления. Для стабилизации работы делителей и устране ния временной ошибки на все делители подают импульсы с выхо да формирующего блокинг-генератора. Расчет делителя произво дят таким образом, чтобы отпирание лампы происходило лишь при совпадении импульса запуска от предыдущего каскада деления и импульса синхронизации от формирующего блокинг-генератора. В этом случае стабильность и временное положение импульсов це ликом определяются формирующим блокинг-генератором.
Диаграмма работы делителя частоты
Изучение процесса деления частоты показывает, что коэффици
ент, деления |
п. зависит |
от |
параметров |
имшульса запуска |
(его -ам |
плитуды U 3 |
и периода |
Т 3 |
) , а также от |
параметров С/см, |
ТР |
|
|
|
|
|
ИЗ |
определяющих форму напряжения на сетке во время разряда кон денсатора. Связь между указанными параметрами и коэффициен
том деления п может быть представлена в наглядной форме |
диа |
||||||||||||||||
граммой |
работы делителя |
на плоскости \U3, |
Т3]. |
|
|
|
|
||||||||||
Рассмотрим вначале область деления частоты с заданным ко |
|||||||||||||||||
эффициентом |
деления |
п., |
представляющую |
собою |
зависимость |
||||||||||||
U3—f{T3). |
На рис. 17.6 показано, |
как работает делитель |
частоты |
||||||||||||||
с коэффициентом |
деления га = 5. Для |
|
срабатывания |
в |
момент |
||||||||||||
fn — чТ3 |
— / 5 |
амплитуда |
запуска |
|
U3 |
должна |
превышать |
вели |
|||||||||
чину £/3 |
и,,,,, |
которая |
определяется |
напряжением |
на конденсаторе |
||||||||||||
в момент tn: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(17.18) |
||
|
|
|
|
U3 |
|
|
" с |
( « |
Т3) |
— |
| £ 6 о|. |
|
|
||||
Если увеличивать амплитуду U3 |
(при неизменных |
остальных |
|||||||||||||||
параметрах делителя), то коэффициент деления |
п = 5 |
сохраняется |
|||||||||||||||
до тех пор, пока предыдущий импульс |
синхронизации, приходя |
||||||||||||||||
щий в момент |
|
= |
(« — 1) Т3 |
= |
/ 4 , |
не откроет |
лампу. |
Напря |
|||||||||
жение на конденсаторе в этот |
момент |
времени |
определяет |
мак |
|||||||||||||
симальную амплитуду |
|
и3пШКС: |
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
£Лп макс = «с [(п. - |
|
1) Т3] - |
\Eg0\. |
|
|
(17.19) |
||||||||
Таким образом, делитель частоты работает с данным коэффи |
|||||||||||||||||
циентом |
деления |
п, |
если |
выполняется |
неравенство |
|
|
|
|||||||||
|
|
|
|
£/,„мин < |
Уз |
< |
U3, |
|
|
|
|
|
(17.20) |
||||
Воспользовавшись выражением (17.7) и выполнив преобразо |
|||||||||||||||||
вания, аналогичные указанным выше, найдем |
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
1 |
|
п т„ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
" |
|
|
|
(17.21) |
||
|
|
|
£ / з п м и |
|
|
Ои |
Т™? |
- |
1 |
|
|
||||||
|
|
|
|
|
|
|
|
|
1 |
( п - 1 ) Т , |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
т авт |
] |
|
|
(17.22) |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
По формулам |
(17.21) |
и |
(17.22) |
построены кривые АВп |
и |
АВп-\ |
|||||||||||
на рис. 17.9. Так как при Т3 ~- 0 |
получим |
|
|
|
|
|
|||||||||||
|
С/З п мин = |
£ / зп макс = |
\ESQ\ [ОЦ — |
1] = |
^ С м — |£g0|» |
|
|
||||||||||
то обе кривые начинаются из одной |
и той же точки А на оси ор |
||||||||||||||||
динат. Величины |
£ / 3 п м и „ и и3аШКС |
|
равны нулю соответственно при |
||||||||||||||
|
|
|
|
|
|
Т |
|
и |
|
Т3 — п — 1 |
|
|
|
|
|||
|
|
|
|
'р |
7 з |
' авт |
|
|
|
|
|
||||||
Эти значения |
периода |
определяют |
положение |
точек Ва |
и |
Вп-\ |
|||||||||||
на оси абсцисс. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
M l
Согласно неравенству (17.20) область деления |
с коэффициен |
том ги ограничена снизу кривой АВп и сверху |
кривой Л 5 „ - ъ |
Однако не всюду внутри этой области возможно устойчивое деле
ние. |
Устойчивая |
работа |
дели |
|
|
теля |
обеспечивается, если |
|
|
||
|
|
Т |
|
|
|
Поэтому область деления час- |
|
||||
готы с коэффициентом п огра |
|
||||
ничена справа |
прямой |
В„ Сп |
|
||
и соответствует площади фигу- |
|
||||
эы |
А Вп Сп |
на |
плоскости |
|
|
Ua, |
Т3]. Внутри |
площади фи |
|
||
гуры |
BnC„Bn-i |
|
наблюдается |
|
|
неустойчивая |
работа делителя, |
Рис. 17.9. Область работы делителя |
|||
когда возможны |
лишь отдель |
с коэффициентом л. |
|||
ные |
срабатывания блокинг-ге |
|
нератора |
под |
действием импульсов |
синхронизации. |
|
|||
Как видно |
из рис. 17.6, при U3 |
> |
<7зп.чакс коэффициент |
деле |
|||
ния уменьшается на единицу, а при U3 |
< |
с73 п М И „, наоборот, увели |
|||||
чивается |
на единицу. Следовательно, |
|
|
|
|||
|
|
^ 3 n _ j M H H = = |
^ з п м а к с 1 |
|
|
||
|
|
^ 3 П + 1 М А К С = = |
^ 3 П М И П ' |
|
|
||
Иначе |
говоря, верхняя граница |
AB„-i |
области деления |
с ко |
эффициентом п является нижней границей для области деления с коэффициентом (п—1). Точно также нижняя граница АВП данной области служит верхней границей для области деления с коэффи циентом (ra+'l).
Построив последовательно указанным выше способом области деления с коэффициентами /г= 1, 2, 3, 4, . . ., получим диаграмму работы делителя — совокупность прилегающих друг к другу об
ластей деления. На |
рис. |
17.10 она |
построена |
на плоскости отно |
||
сительных координат |
[Хц, Хт ], причем |
|
|
|||
|
|
|
U3 |
|
|
|
|
|
UCti |
- |
\Е{ |
|
|
|
|
|
|
go| |
|
|
|
|
|
|
|
|
(17.23) |
|
|
|
т |
|
|
|
|
|
|
1 |
Я1 |
|
|
На диаграмме работы |
делителя |
(рис. 17.10) |
можно |
проследить |
||
возможные режимы. Например, |
если 7"3 = const [Хт |
24 ), то сос |
тояния делителя определяются прямой GKL. При уменьшении! Хц
' О С. И. Вш-лин. |
145 |
(или амплитуды U 3 ) схема работает последовательно с коэффи циентами деления п = 1,2,3, а затем при малом )-и (на отрезке GK) деление неустойчиво.
Рис. 17.10. Диаграмма работы делителя частоты.
При |
U3 |
— const |
(например, |
Х и = 0 , 2 8 ) |
состояния |
делителя |
||||||||
определяются прямой |
MNOPQR. |
На участке MN |
делитель |
рабо |
||||||||||
тает |
с коэффициентом |
|
п=\, |
затем при |
уменьшении Т3 |
наблюда |
||||||||
ется |
неустойчивая |
зона |
N0. |
На участке |
ОР |
коэффициент деления |
||||||||
п = 2, |
после |
чего снова |
наблюдается неустойчивая |
зона |
PQ. |
При |
||||||||
дальнейшем |
уменьшении периода |
Т3 |
импульсов |
синхронизации |
||||||||||
(точнее, |
параметра |
Хт ) |
делитель |
работает |
на отрезке |
QR, |
где |
|||||||
коэффициент деления |
последовательно |
пробегает |
значения |
п = 3 , |
||||||||||
4, 5 . . . |
« |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Расчет делителя |
частоты |
|
|
|
|||||
Так как форма колебаний генератора, работающего в режиме |
||||||||||||||
деления |
частоты, зависит исключительно |
от |
внутренних |
процессов |
в схеме, то расчет амплитуды и длительности генерируемых им пульсов, а также параметров рабочей точки производится так же, как и в режиме автоколебаний. Особенности режима деления учи тываются при определении двух величин: постоянной времени хр разряда емкости релаксатора (или пропорционального ей периода автоколебаний Га в т ) и амплитуды U3 запускающих импульсов. Эти величины определяются исходя из обеспечения устойчивой и надежной работы делителя частоты с заданным коэффициентом деления п.
146