Файл: Васильев, А. С. Статические преобразователи частоты для индукционного нагрева.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 24.10.2024
Просмотров: 62
Скачиваний: 0
П ри п о с т о я н н о м н а п р я ж ен и и на и н д у к т о р е U„ |
|
||
°ои |
л [ |
— ‘Ч п + ^ « > П - т '| ( 1” 71к) |
У 2гИ ~ 1 |
|
|
% I |
|
|
|
Чк (’Пк — 'Пп) In |
|
|
|
Гк |
|
|
|
|
(94) |
Отсюда |
получаем: |
|
|
|
Xf |
2F, |
(95) |
|
т | со;Олгг — 1 |
||
|
|
|
|
|
xt - |
гя'псо |
(96) |
|
|
||
Температура поверхности капли изменяется по закону |
|||
|
|
Т--=Т0+Т,„ cos со/. |
(97) |
Причем |
7\„/Го<1. |
(98) |
|
|
|
Волна принимается плоской. Это допустимо, так как глубина проникновения тепловой волны в каплю
л Г |
ЧХ |
Дт = V |
------> |
т |
соре |
где X и с — теплопроводность и удельная теплоемкость капли; р — плотность материала капли.
Для плоской волны можно написать уравнение
(99)
' 1
металла
|
дТ |
дТп , |
Тт |
(sinсо/—cos со/), |
(100) |
||
|
~ Ш = ~ д И — |
|
|||||
производная берется по нормали к поверхности. |
|
||||||
Условие теплового баланса |
|
|
|
|
|||
|
|
+ |
|
|
|
(Ю1) |
|
где Ро 'и |
— постоянная и |
переменная составляющие мощности, |
|||||
поглощаемой |
каплей; |
s — площадь |
поверхности капли; о — постоян |
||||
ная излучения поверхности капли. |
|
|
|
||||
Подставив (99) и |
(100) в (101), будем иметь, если |
|
|||||
|
|
Я° = ( о:Г0 |
- ^ Х) |
5' |
• (102) |
||
|
= 4os7’g Тт cos со/ — -д— Тт (sin соt — cos со/). |
(ЮЗ) |
|||||
По аналогии с (89), учитывая (91), мощность, поглощаемая |
|||||||
каплей, может быть определена как |
|
|
|
||||
Р (/) = |
Р 0+ р тcos со/ |
dP |
dfjK |
Fmcos со/ |
(104) |
||
df)s |
dhK |
m | cog — со2 |
|||||
|
|
|
|
|
Сопоставляя |
(96) п |
(97), |
получаем: |
|
|
|
|
||
|
|
|
01 т) |
г л |
1 |
X |
|
Y + |
|
|
|
|
|
4аГЗдт |
|
||||||
|
|
|
[ Г |
|
) |
|
|
|||
|
|
|
|
|
|
|
||||
+ |
4c7>T |
р2 |
1 -f- |
d P |
|
d-qs |
|
|
F ° |
1 |
|
d-i]K |
d h к |
|
t n P |
||||||
|
|
|
|
[tOg --- О)2] |
||||||
|
Отсюда после преобразования |
получим: |
|
Fn |
|
|
||||
|
|
|
|
1- |
I «5 - |
|
|
| |
||
|
|
|
|
|
щ °2 ) |
|||||
|
Ч |
'2Р-гГ~= - |
2 |
Vr(i+e1i^ffl)*+(0IK<o)* |
||||||
где |
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I |
_ |
|
• |
|
|
|
|
|
|
|
|
1 |
4а7* |
|
|
|
|
|
|
|
е2 |
|
1 |
|
dc (т)к) dv)K |
|
|
||
|
|
с (т)к) |
|
d-qKdhK |
|
|
||||
|
Взяв производные, |
найдем: |
|
|
|
|
|
|
||
|
|
|
|
|
|
In |
+ |
V |
T |
|
|
|
|
|
|
|
|
|
|
|
(105)
(106)
(107)
(108)
|
V i — ii |
X |
, i |
н - V i — x |
X |
|
||
V|T In—5- In -------------------- |
|
|
K |
1 - 1 / 1 - ^ |
|
X |
|
(109) |
Подставив выражения (95), (96), (106) в (83), получим урав нение функции /(со).
Приведем пример расчета при допуске на диаметр жилы про вода 5% (что равносильно 10%-ному допуску на погонное сопротив
ление), толщина изоляции 20%. Средние размеры капли и индук
тора при литье микропроводов с (7Ж= 15-5-40 |
мкм приняты: |
гк = 5-10_3 м, Лк = 9-10- 3 м, а=60°, |
г0= 3 • 10—3 и. |
Температура капли Г=1500 К. Частота |
тока в индукторе /ц= |
= 880 кгц. Масса капли т = 5- 10~ 3 кг. |
|
Силу взаимодействия капли с полем индуктора можно прибли женно принять равной силе тяжести капли. Для данного случая
Fo=6 • 10- 2 н.
По методике, изложенной в [Л. 10], были определены £,<=3,
т|к=0,94, rin=0,5, 0=3,46-10_3 м, а по формулам (93) и (94) —
собственные частоты колебаний капли при постоянстве напряжения на индукторе и тока в нем: сооо=52 сек-1, соог=50 сек-1 (можно считать среднюю величину юо=51 сек-1).
Для меди р= 8,9- 103 кг/мг, |
с=390 |
дж[(кг-°С), Х=360 вт/(м°С), |
|
сг=4,0-10~ 8 вт1(м2 -°С4). По формуле |
(107) 0!=65,6 |
сек~1. По фор |
|
муле (108) 02=91,7 см-К |
|
|
|
Необходимо отметить, что если технологический процесс яв |
|||
ляется линейным объектом, то |
можно |
использовать |
представление |
об амплитудно-фазовых частотных характеристиках и написать, что изменение параметра выходного продукта Аук может быть связано
при |
помощи этих характеристик с технологическими параметрами |
(8 6 ), |
(87): |
|
a W x y (0) + Лп | \Vx y (/»„) | < ^§5-. |
Сами амплитудно-фазовые и частотные характеристики могут быть представлены в виде произведения характеристик, связываю щих косвенные параметры Z; с основными (Xi):
|
( / |
« ) |
= |
|
U<S*)W |
^ |
|
( |
/ < o |
z ) . |
|
|
i=l |
|
i i |
i ^ t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Величины W,ZM определены |
теоретически |
(связь |
температуры, |
|||||||
скорости, высоты капли с напряжением и током |
в индукторе), а ве |
|||||||||
личины Wx z |
надо определить |
по данным [Л. 12]. |
Таким |
образом, |
||||||
по формулам |
(95) — (97) |
определяют: |
|
|
|
|
|
|||
при ш = |
0 |
|
|
|
|
|
|
|
|
|
* , ^ = 4 2 0 ; |
Xi ~ ~ |
|
== 9,6-103; |
* £- ^ |
= |
0 ; |
|
|||
|
X'im |
•A'im |
|
|
X'im |
|
|
|||
при со = |
942 сек~ 1 |
|
|
|
|
|
|
|
|
|
X i ~ z |
_ n nr |
--------0,25; X i — |
- = 0,027lO -3; Xi |
U„ |
- 25,6- IO-3 . |
Воспользовавшись данными, показывающими связь между диа метром провода и скоростью вытягивания, температурой и высотой капли, можно написать:
ddm |
-(10^20); |
1 |
ddKi |
(50 |
100) ж-1; |
|
dm дТв |
dm |
dh |
||||
|
|
|
v ddm
(0,3ч -1,3).
Там же приведена передаточная функция канала скорость — диаметр жилы для средней скорости о = 2 0 м[мин, диаметр жилы равен 100 мкм:
|
w |
(Р )',= 1 + |
12(1 — 9,5р) |
|
||
|
14,7/>+75/>г + |
616/?3‘ |
||||
На частоте 150 гц |
(«о = |
942 |
сек~ ’) |
|
||
v |
ddm |
|
v |
Д dm |
о |
= — 3,47-10-а. |
dm |
dv |
— |
dK |
До |
dK W ( p ) |
Амплитудно-частотные характеристик)? длд нашего случая бу дут выглядеть;
54
Длй Частоты (о=б |
|
|
|
|
|
||||
|
x t |
дТк |
|
|
|
dh |
■0,93-10~ 2 мкм\ |
||
|
|
|
dXt |
:°'227; Х*~ШГ„ |
|||||
|
|
|
|
|
x t |
dv„ |
— 0; |
|
|
|
|
|
|
|
vm |
дх(п |
|
||
для |
частоты |
со = |
942 сек~1 |
(f — 150 гц) |
|||||
|
Xt |
A Tm |
_____ |
|
|
Д/г |
226-10“ 6 лг/сиг; |
||
|
Т |
AXt„ |
=1.75-10—; |
X t - r — |
|||||
|
|
Xt |
Avw |
|
u^iin |
|
|||
|
|
|
|
|
=2,2-10~3. |
||||
|
|
|
|
|
vm |
AXt- |
|||
|
|
|
|
|
|
|
|
||
Для |
частоты |
со = |
0 |
dd№ |
|
|
|||
|
|
|
|
|
|
•5,47. |
|||
|
|
|
|
|
|
dx< |
|||
Для частоты to = |
942 сек ~ 1 |
(f = |
150 гц) |
xt Arf„
; — 3,776-10“ 3.
d n
По формуле [87]
Adta a0 (— 5,47) + a n (— 3,776) • 10" 8 < —f
Коэффициент при ап мал, поэтому пульсация на частоте 150 гц не оказывает влияния на разброс диаметра; статический же допуск на напряжение и ток индуктора весьма жесток (ао=5/ (3-5,47= =0,3).
Аналогично были определены требования по стабильности ча стоты, которые дают при постоянном токе в индукторе lAf='l,78%; при постоянном напряжении на индукторе <Д/=0,56% и при по стоянной мощности в капле Af=15,1%.
Предложенный метод определения необходимых и достаточных требований к параметрам и полученные критерии качества применимы для оценки регулирования не только электрического режима индуктора, но и любо го параметра как при литье микропровода, так и других технологических процессах.
Все приведенные примеры говорят о том, что лам повые генераторы должны являться составной частью технологической установки и проектироваться только для узких целей. В настоящее время является непра вильным проектирование и изготовление ламповых гене раторов для универсальных нагрузок. Остановимся еще на одном примере технологии с применением контрагированного плазменного разряда, когда технология полностью определяет схему генератора.
55
7 . Установки для плазменного разряда
Индукционный плазменный разряд обладает существенными преимуществами по сравнению с многими другими источниками теп ла, используемыми для создания высоких температур, так как по зволяет вести процесс в плазме без загрязнения материалом горелки, обладает высокой стабильностью параметров разряда, дает воз можность вести реакции при всевозможных сочетаниях газов: инерт ных, восстанавливающих и окисляющих. Суть явления состоит в том, что разряд образуется в поле индуктора, внутри которого находится камера с протоком какого-либо газа. Использование обычного лампового генератора приводит к тому, что при равно мерном аксиальном потоке газа разряд целиком заполняет сечение разрядной камеры. Проблема защиты стенок разрядной камеры от разрушающего действия высоких температур решается применением водоохлаждаемых разрядных металлических камер или путем со здания высокоскоростного потока газа в пристеночной области, отжимающего разряд от стенок. И в том, и в другом случае эффек тивность процесса резко падает при использовании вихревого потока газа, большие тангенциальные скорости создают неудобства цри ра
боте с различными мелкодисперсными массами, |
а охлаждение |
стенок ведет к большим потерям. |
можно локали |
Оказывается, однако, что индукционный разряд |
зовать в строго определенном объеме. Впервые это явление было описано в [Л. 16]. Создание контрагпрованного индукционного раз ряда стало возможным только при определенной выходной харак теристике лампового генератора. Исследования контрагпрованного
разряда |
показали, |
что диаметр d2 разряда в пределах ошибок из |
|
мерения |
не зависит от расхода газа, давления в разрядной |
камере |
|
и ее диаметра, а |
отношение диаметра контрагпрованного |
разряда |
к глубине проникновения тока в столб разряда всегда равно по стоянной величине
d2/А„=3,5, (МО)
где Дп — глубина проникновения электромагнитной волны в плаз менный столб,
здесь уп — проводимость плазменного столба; ц — магнитная про ницаемость.
Для расчетов примем, что плазма представляет собой прово дящий цилиндр, который благодаря относительно постоянному рас пределению температуры можно считать однородным по своим электрическим свойствам. Тепловое равновесие в системе устанавли вается в случае, если мощность, передаваемая в систему (Р2), рав на мощности тепловых потерь Рт:
Р* = Р.г. |
( 112) |
Так как проводимость плазмы есть |
не что иное, как функция |
.температуры, то передаваемая в плазму мощность есть функция температуры, диаметра плазменного столба \d2) и его высоты (а2), т. е. объема. Эти же величины определяют и мощность потерь. Итак, уравнение Р2 = у ( Т 2, d2, а2) определяет некоторую поверх
56