Файл: 6 10 вопросы. Заключение по всем генераторам. 87.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 02.02.2024

Просмотров: 632

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Оглавление

2. Назначение, классификация и принцип работы пассивных фильтров. Передаточные функции аналоговых фильтров. Описание LC-фильтров. Сравнение пассивных фильтров с другими видами фильтров.

3. Описание и классификация активных фильтров. Фильтр нижних частот.

4. Описание и классификация активных фильтров. Фильтр верхних частот.

5. Описание и классификация активных фильтров. Полосовые фильтры.

6. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор на основе моста Вина.

7. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор на основе сдвига фаз с одним ОУ.

8. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Буферированный генератор на основе сдвига фаз.

9. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор Буббы.

10. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Квадратурный генератор.

6 – 10 вопросы. Заключение по всем генераторам.

11. Модуляция и разновидности модулированных сигналов. Общие сведения о модуляции. Широтно-импульсная модуляция.

12. Инверторы. Общие сведения, принцип работы, схемотехника. Автономный однофазный инвертор. Полумостовая и мостовая топологии.

13. Инверторы. Общие сведения, принцип работы, схемотехника. Автономный трехфазный инвертор. Способы управления.

14. Принципы автоматического управления. Общие сведения о структурах систем управления. Регуляторы.

15. Электрический ток в вакууме. Вакуумный диод. Вакуумный триод.

16. Ламповый генератор с независимым возбуждением.

17. Ламповый генератор с самовозбуждением.




В этом фильтре при увеличении частоты сопротивление последовательного элемента уменьшается. Он пропускает высокочастотные сигналы, а для сигналов низких частот его реактивное сопротивление велико. Параллельный элемент оказывает шунтирующее влияние на сигналы низких частот, а для высокочастотных сигналов его реактивное сопротивление велико.





Д
ля увеличения крутизны амплитудно-частотной характеристики в Г-образную структуру можно ввести дополнительный конденсатор, как показано ниже.

Такой фильтр имеет Т-образную структуру. В Т-образном фильтре значение индуктивности L не отличается от ее значения в исходной Г-образной структуре и все расчетные формулы остаются такими же. Суммарная емкость конденсаторов должна быть эквивалентна емкости одиночного конденсатора исходной Г-образной структуры. Обычно эта требуемая общая емкость распределяется поровну между двумя конденсаторами так, что Т-образном фильтре верхних частот каждый конденсатор имеет емкость, равную удвоенному значению емкости в Г-образной структуре.


2L

2L
Крутизну амплитудно-частотной характеристики фильтра можно также повысить путем введения в схему дополнительной катушки индуктивности, как показано ниже, образуя П-образный фильтр.





В П-образном LC-фильтре значение емкости конденсатора не изменяется, а суммарная индуктивность катушек должна быть эквивалентна индуктивности одиночной катушки исходной Г-образной структуры. Обычно требуемая общая индуктивность распределяется поровну между двумя катушками так, что каждая из них имеет индуктивность, равную удвоенному значению индуктивности Г-образной структуры.


Работа полосно-заграждающего (режекторного) фильтра основана на различии зависимостей полных сопротивлений параллельной и последовательной резонансных цепей от частоты. Полное сопротивление параллельной LC-цепи на резонансной частоте максимально, тогда как у последовательной цепи оно минимально. Эти две LC-цепи, соединенные определенным образом (см. ниже), образуют Г-образный режекторный фильтр.




2L

2L
На центральной частоте требуемого диапазона полное сопротивление последовательной LC-цепи (она включена параллельно нагрузке) минимально, и она оказывает шунтирующее воздействие и ослабляет сигналы. Полное сопротивление параллельной LC-цепи (которая включена последовательно с нагрузкой) на центральной частоте требуемого диапазона максимально, и она препятствует прохождению сигналов.





Т-образные и П-образные полосно-пропускающие фильтры (см. выше) обладают более высокой крутизной амплитудно-частотной характеристики.

а) П-образный фильтр

б) Т-образный фильтр

Сравнение пассивных фильтров с другими видами фильтров.

Достоинства пассивных фильтров: в качестве фильтрующих цепей, особенно в области низких частот (десятки килогерц и ниже), могут быть использованы различные схемы, образованные только из резисторов и емкостей (RC-цепи). В последнее время в связи с требованиями к микроминитюаризации электронной аппаратуры широко внедряются в практику RC-цепи, образованные не только дискретными R- и C-элементами, но и распределенными. Замена дискретных элементов распределенными приводит в ряде случаев не только к уменьшению габаритных размеров, но и к улучшению электрических характеристик фильтров. К достоинствам следует также отнести простоту конструкции фильтров и надежность.

К недостаткам пассивных фильтров следует отнести их большие масса габариты, особенно это относится к LC-фильтрам. Низкочастотные фильтры обычно никогда не делают на таких базисных элементах, так как здесь потребовались бы слишком громоздкие и дорогостоящие катушки индуктивности.



3. Описание и классификация активных фильтров. Фильтр нижних частот.


Описание и классификация активных фильтров.

Активный фильтр – аналоговый электронный фильтр, в котором присутствует один или несколько активных компонентов.

При использовании в качестве элемента схемы фильтра операционного усилителя (ОУ) можно синтезировать характеристику любого LC-фильтра без применения катушек индуктивности. В отличие от пассивных RC-фильтров, активные обеспечивают более качественное разделение полос пропускания и затухания. В схемы активных фильтров помимо пассивных компонентов (резисторов, конденсаторов и катушек индуктивности) входят такие активные изделия, как транзисторы или интегральные микросхемы.

Активные резисторно-конденсаторные фильтры имеют огромное преимущество перед их пассивными аналогами, особенно на частотах ниже 10 кГц. Пассивные фильтры для низких частот должны содержать катушки большой индуктивности и конденсаторы большой емкости. Поэтому они получаются громоздкими, дорогостоящими, а их характеристики оказываются далеко не идеальными.



Схемы дифференциатора (см. рис. а) и интегратора (см. рис. б), построенные с применением операционных усилителей, представляют собой простейшие активные фильтры. При выборе элементов схемы в определенной зависимости от частоты дифференциатор становится фильтром верхних частот, а интегратор - фильтром нижних частот.



Активные фильтры можно разделить на группы по различным признакам: назначению, полосе пропускаемых частот, типу усилительных элементов, виду обратных связей и др. По полосе пропускаемых частот фильтры делятся на четыре основные группы: нижних частот, верхних частот, полосовые и заграждающие.

По назначению фильтры делятся на сглаживающие фильтры источников питания, заграждающие фильтры помех, фильтры для селективных усилителей низкой или высокой частоты и др.

По типу усилительных элементов можно выделить транзисторные фильтры
, фильтры на усилителях с ограниченным усилением, на операционных усилителях, на повторителях напряжения и др. Все рассмотренные фильтры могут иметь одну цепь обратной связи или несколько. В связи с этим различают фильтры с одноконтурной и с многоконтурной обратной связью. Кроме этого, различают фильтры по числу полюсов на частотной характеристике – фильтры первого порядка, второго и более высоких порядков. Фильтры высоких порядков имеют более крутые границы полос пропускания и затухания и более плоскую характеристику в области полосы пропускания, что естественно улучшает качество фильтра.

Широкие возможности активных RC-фильтров связаны с использованием в них активных элементов. Цепи, содержащие только сопротивления и емкости, имеют полюсы передаточной функции на отрицательной действительной полуоси комплексной плоскости p=σ+iω, что ограничивает возможности создания фильтров. В отличие от пассивных, активные RC-фильтры (ARС-фильтры) могут иметь полюсы в любой части комплексной плоскости. Однако схемы с полюсами в правой полуплоскости неустойчивы, поэтому в активных фильтрах используются только те схемы, полюсы передаточной функции которых располагаются в левой полуплоскости или на оси .

При проектировании активных фильтров фильтр заданного порядка разбивается на звенья первого и второго порядка. Результирующая АЧХ получится перемножением характеристик всех звеньев. Применение активных элементов (транзисторов, операционных усилителей) позволяет исключить влияние звеньев друг на друга и проектировать их независимо. Это обстоятельство значительно упрощает и удешевляет проектирование и настройку активных фильтров.

Фильтр нижних частот.

Фильтр нижних частот первого порядка на ОУ и его АЧХ. Если объединить схему инвертирующего усилителя со схемой интегратора, образуется схема фильтра нижних частот первого порядка, которая показана ниже. Амплитудно-частотная характеристика – зависимость амплитуды сигнала на выходе устройства от частоты при постоянной амплитуде на входе этого устройства – представлена ниже.



Такой фильтр представляет собой инвертирующий усилитель, обладающий постоянным коэффициентом усиления в полосе прозрачности от постоянного тока до граничной частоты