Файл: 2 Элементы технологического процесса сборки. Техническая документация.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.02.2024
Просмотров: 26
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
с горячей просушкой (под лампой) каждого слоя: эта мера предотвратит коррозию деталей в условиях повышенной влажности.
В последнюю очередь припаивают провода, идущие к электронному блоку (или от него), и также покрывают места паек водостойким лаком.
3 Инструмент и приспособления для пайки
3.1Виды электрических паяльников и их устройство
Паяльник — это электрический прибор, состоящий из нагревательного элемента, стержня, изоляционной ручки, электрического шнура и сетевой вилки. Дешёвые паяльники как раз и состоят из этих частей. Под действием электрического тока нагревательный элемент разогревается и тепло передаётся стержню (жалу). Стержень, как правило делают из меди. Температура жала паяльника держится в районе 180-300 С.
Рисунок 7 - Технологический процесс сборки изделия.
Флюс — вещество, облегчающее пайку и предотвращающие окисление спаиваемых поверхностей. Если не применять флюс, то припой не будет ровно покрывать спаиваемые поверхности проводников. Флюсы нейтрализуют плёнку окисла на поверхности металла. Наш флюс пришел в маленькой металлической баночке
Припой — легкоплавкий сплав, которым производят пайку. Основным припоем при радиомонтаже является сплав свинца и олова. Можно конечно использовать и чистое олово, но оно дорогое, поэтому применяют оловянно-свинцовые сплавы. По прочности пайки оловянно – свинцовые припои не уступают чистому олову. Наиболее распространены припои ПОС-61 и ПОС-40. Цифры 61 и 40 обозначают процентное содержание олова в сплаве. ПОС-61 содержит 61% олова, в ПОС-40, соответственно 40%. Чем больше в припое свинца, тем он темнее. Естественно, кроме стандартных припоев есть и улучшенные, обладающие тем или иным свойством (легкоплавкостью, прочностью, стойкостью к агрессивным средам).
Наш припой пришел в небольшой пластиковой колбочке.
Рисунок 8 – Свинцовые припои
Выполнены с нихромовой спиралью. Через нее проходит электрический ток. У инновационных моделей паяльников существует контроль нагрева наконечника с помощью термодатчика, который подает сигнал, чтобы вовремя отключить спираль, когда температура достигла рабочего режима. Термодатчик выполнен по принципу термопары.
Электропаяльники с нагревателем из нихрома имеют несколько разных исполнений. Простые паяльники имеют в конструкции нихромовую спираль. Она намотана на корпус из изоляционного материала. Внутри вставлен нагревающийся стержень. В современных конструкциях нихром встроен в изоляторы, которые уменьшают потерю тепла, увеличивают теплоотдачу.
Существуют также конструкции паяльников, у которых нагреватель керамический, в виде стержня. Он нагревается от подведенного напряжения к его контактам. Такие нагреватели признаны, как более совершенные. Они имеют свои достоинства: быстрый нагрев, повышенный срок службы (если к нему бережно относиться), широкий интервал мощности и температуры.
Паяльник индукционного типа. В этом устройстве стержень нагревается индукционной катушкой. Наконечник выполнен с покрытием из ферромагнитного материала. В этом материале катушка образует магнитное поле, от которого наводится ток, нагревающий сердечник паяльника.
Импульсные паяльники. Такой тип паяльников относится к особой категории. Порядок их включения таков: нажимают кнопку пуска и держат ее в нажатом состоянии. Наконечник паяльника быстро нагревается, за несколько секунд, достигает рабочей температуры. Осуществляется пайка необходимого места. После пайки кнопка выключается, происходит охлаждение паяльника.
Рисунок 9 – Конструкции паяльников
3.2Мягкие и твердые припои, их свойства и применение.
Пайка твердыми припоями примечательна тем, что при ее проведении участок стыковки изделий должен прогреваться до температур порядка 450-ти градусов и более.
Такие припои называются тугоплавкими, а полученное с их помощью соединение сохраняет свои прочностные характеристики даже при сильном термическом нагреве.
В отличие от твердых пайка мягкими припоями предполагает использование низкотемпературных расходных материалов, которые обеспечивают надежное сцепление при значительно меньшем нагреве (порядка 200-300 ℃).
Они, как правило, применяются, при пайке изделий, эксплуатируемых в нормальных температурных условиях, и не гарантируют сохранения контакта при сильном нагреве.
Возможности твердых припоев широко используются в тех сферах, где требуется получать шов, по своим прочностным свойствам занимающие промежуточное положение между сваркой и низкотемпературной пайкой.
При этом особое внимание уделяется сохранению структуры материалов в зоне контакта, которые после обработки не должны терять первоначальных характеристик. Твердосплавные соединения чаще всего востребованы в следующих ситуациях: производство металлорежущего инструмента, резцов с твердосплавными рабочими вставками; при изготовлении емкостей и сосудов, производимых на основе цветных металлов и из нержавейки; в автомастерских (при ремонте радиаторов и отдельных элементов трансмиссии), а также в тех местах, где применение сварки крайне нежелательно; при монтаже и ремонте трубок из твердых медных сплавов, установленных в холодильном и теплообменном оборудовании и работающих в условиях «критических» температур или повышенного давления; для надежного и прочного соединения тонкостенных предметов и деталей, испытывающих при эксплуатации повышенные нагрузки и упругие деформации. Применение техники твердой пайки в домашних условиях предполагает наличие газовой горелки, посредством которой можно обеспечить высокую степень нагрева в зоне контакта. Помимо этого, потребуется сам тугоплавкий припой, плавящийся при температурах свыше 450 градусов, а также специальная активная добавка, называемая флюсом.
Лишь при выполнении этих требований в результате паяльных работ удается получить достаточно надежное и твердое паяное соединение.
Рисунок 10 – Пайка твердыми припоями
3.3 Флюсы, их назначение и применение.
Флюсы — вещества, обеспечивающие удаление окисей спаиваемых металлов, образуемых при нагреве, а также защиту очищенных перед пайкой металлов от окисления. Флюсы способствуют также лучшему растеканию припоя при пайке.
Флюсы выбирают в зависимости от соединяемых пайкой металлов или сплавов и применяемого припоя, а также от вида монтажно-сборочных работ. Температура плавления флюса должна быть ниже температуры плавления припоя.
По действию, оказываемому на металл, флюсы разделяютна активные (кислотные), бескислотные, активированные, антикоррозийные и защитные.
Активные флюсы содержат в своем составе соляную кислоту, хлористые и фтористые металлы и т. д. Эти флюсы интенсивно растворяют оксидные пленки на поверхности металла, благодаря чему обеспечивается высокая механическая прочность соединения. Однако остаток флюса после пайки вызывает интенсивную коррозию соединения и основного металла.
При монтаже электроаппаратуры применение активных флюсов не допускается, так как с течением времени их остатки разъедают место пайки.
Активизированные флюсыготовят на основе канифоли с добавлением небольших количеств солянокислого или фосфорнокислого анилина, салициловой кислоты или солянокислого диэтиламина. Эти флюсы применяют при пайке большинства металлов и сплавов (железо, сталь, нержавеющая сталь, медь, бронза, цинк, нихром, никель, серебро), в том числе и оксидированных деталей из медных сплавов без предварительной зачистки. Активированными флюсами являются флюсы ЛТИ, в состав которых входит этиловый спирт (66 - 73%), канифоль (20 - 25%), солянокислый анилин (3 - 7%), триэтаноламин (1 - 2%). Флюс ЛТИ дает хорошие результаты при использовании оловянистых припоев ПОС-5 и ПОС-10, обеспечивая повышенную прочность спая. Для пайки меди и медных сплавов, константана, серебра, платины и ее сплавов применяют антикоррозийные флюсы. Они содержат в своем составе фосфорную кислоту с добавлением различных органических соединений и растворителей. В состав некоторых антикоррозийных флюсов входят органические кислоты. Остатки этих флюсов не вызывают коррозии. Антикоррозийный флюс ВТС состоит из 63% технического вазелина, 6,3% триэтаноламина, 6,3% салициловой кислоты и этилового спирта. Остатки флюса удаляют протиркой детали спиртом или ацетоном.
Защитные флюсы предохраняют ранее очищенную поверхность металла от окисления и не оказывают химического воздействия на металл. К этой группе относятся неактивные материалы: воск, вазелин, оливковое масло, сахарная пудра и др.
Для пайки твердыми припоями углеродистых сталей, чугуна, меди, медных сплавов в основном пользуются бурой (тетраборат натрия), которая представляет собой белый кристаллический порошок. Плавится она при температуре 741° С.
Для пайки латунных деталей серебряными припоями флюсом служит смесь 50% хлористого натрия (поваренной соли) и 50% хлористого кальция. Температура плавления 605° С.
Для пайки алюминия применяют флюсы, у которых температура плавления ниже температуры плавления применяемого припоя. Эти флюсы обычно содержат 30—50% хлористого калия.
Для пайки нержавеющих сталей, твердых и жароупорных сплавов медью, медно-цинковыми и медно-никелевыми припоямиприменяется смесь, состоящая из 50°/о буры и 50% борной кислоты, с добавлением хлористого цинка.
Для удаления остатков флюса после пайки твердыми припоями используют горячую воду и волосяную щетку.
3.4Пайка монтажных соединений. Технология монтажной пайки.
Пайка представляет собой процесс механического и электрического соединения ИЭТ путем смачивания и заполнения зазора между ними расплавленным припоем и сцепления за счет отверждения паяного шва.
Главными вопросами выбора, определяющими наилучшие технико-экономические показатели ЭА являются: марка припоя; метод пайки.
+ Традиционно используемый эвтектический сплав ПОС-61 (имп. Sn63/Pb37) обладает наилучшими показателями – низкой температурой плавления, хорошей смачиваемостью
В производстве, сплавы SnAgCu рассматриваются как наиболее перспективные. Наиболее лидирующие припои на их основе следующие: Sn3,9Ag0,6Cu; Sn3,8Ag0,7Cu; Sn3,0Ag0,5Cu, табл. 30.
На испытаниях SnAgCu проявляет функциональную эквивалентность эвтектическому сплаву SnPb(Ag). Однако SnAgCu плавится при 217°С, что на 34°С больше, чем SnPb.
Печатные платы, компоненты, флюсы, подверженные высоким температурам пайки, испытывают большие термодинамические воздействия, которые могут провоцировать разрушения, дефекты и снижать надежность межсоединений. Динамику этих процессов можно оценить из известных представлений об ускорении процессов термодеструкции. С увеличением температуры на каждые 8°С количество дефектов будет увеличиваться в два раза.
Более высокие температуры бессвинцовой пайки обусловливают необходимость в коренном пересмотре технологий и материалов по всей цепочке производства электронных изделий. Процесс управления бессвинцовой пайкой более труден, поскольку проходит в узких диапазонах технологических режимов. С повышением температуры формируется шлак, отслаиваются контактные площадки, взрываются компоненты (эффект "попкорн"). Необходим тщательный подбор флюсов. Очень важно, чтобы флюс работал в широком диапазоне температур: 130 - 320°С.
Чтобы избежать проблем расслоения и коробления оснований печатных плат, их необходимо изготавливать из материалов с большей температурой стеклования (Tg) - около 150°С и выше. Группа материалов типа FR-1, FR-2, FR-3 с Tg = 125°С, обычно используемая при пайке сплавом SnPb, уже не годится для пайки сплавом SnAgCu. Особенно критично поведение материала основания в процессе горячего облуживания.
Материалы FR-4 имеют Tg в диапазоне 130 - 150°С, что приемлемо для бессвинцовой пайки. Но стоимость таких материалов более чем на 30% выше. Для удешевления в состав армирующих компонентов вводят целлюлозную (СЕМ-1) или стеклянную (СЕМ- 3) бумагу (CEM - Composite Epoxy Material).
В последнюю очередь припаивают провода, идущие к электронному блоку (или от него), и также покрывают места паек водостойким лаком.
3 Инструмент и приспособления для пайки
3.1Виды электрических паяльников и их устройство
Паяльник — это электрический прибор, состоящий из нагревательного элемента, стержня, изоляционной ручки, электрического шнура и сетевой вилки. Дешёвые паяльники как раз и состоят из этих частей. Под действием электрического тока нагревательный элемент разогревается и тепло передаётся стержню (жалу). Стержень, как правило делают из меди. Температура жала паяльника держится в районе 180-300 С.
Рисунок 7 - Технологический процесс сборки изделия.
Флюс — вещество, облегчающее пайку и предотвращающие окисление спаиваемых поверхностей. Если не применять флюс, то припой не будет ровно покрывать спаиваемые поверхности проводников. Флюсы нейтрализуют плёнку окисла на поверхности металла. Наш флюс пришел в маленькой металлической баночке
Припой — легкоплавкий сплав, которым производят пайку. Основным припоем при радиомонтаже является сплав свинца и олова. Можно конечно использовать и чистое олово, но оно дорогое, поэтому применяют оловянно-свинцовые сплавы. По прочности пайки оловянно – свинцовые припои не уступают чистому олову. Наиболее распространены припои ПОС-61 и ПОС-40. Цифры 61 и 40 обозначают процентное содержание олова в сплаве. ПОС-61 содержит 61% олова, в ПОС-40, соответственно 40%. Чем больше в припое свинца, тем он темнее. Естественно, кроме стандартных припоев есть и улучшенные, обладающие тем или иным свойством (легкоплавкостью, прочностью, стойкостью к агрессивным средам).
Наш припой пришел в небольшой пластиковой колбочке.
Рисунок 8 – Свинцовые припои
Выполнены с нихромовой спиралью. Через нее проходит электрический ток. У инновационных моделей паяльников существует контроль нагрева наконечника с помощью термодатчика, который подает сигнал, чтобы вовремя отключить спираль, когда температура достигла рабочего режима. Термодатчик выполнен по принципу термопары.
Электропаяльники с нагревателем из нихрома имеют несколько разных исполнений. Простые паяльники имеют в конструкции нихромовую спираль. Она намотана на корпус из изоляционного материала. Внутри вставлен нагревающийся стержень. В современных конструкциях нихром встроен в изоляторы, которые уменьшают потерю тепла, увеличивают теплоотдачу.
Существуют также конструкции паяльников, у которых нагреватель керамический, в виде стержня. Он нагревается от подведенного напряжения к его контактам. Такие нагреватели признаны, как более совершенные. Они имеют свои достоинства: быстрый нагрев, повышенный срок службы (если к нему бережно относиться), широкий интервал мощности и температуры.
Паяльник индукционного типа. В этом устройстве стержень нагревается индукционной катушкой. Наконечник выполнен с покрытием из ферромагнитного материала. В этом материале катушка образует магнитное поле, от которого наводится ток, нагревающий сердечник паяльника.
Импульсные паяльники. Такой тип паяльников относится к особой категории. Порядок их включения таков: нажимают кнопку пуска и держат ее в нажатом состоянии. Наконечник паяльника быстро нагревается, за несколько секунд, достигает рабочей температуры. Осуществляется пайка необходимого места. После пайки кнопка выключается, происходит охлаждение паяльника.
Рисунок 9 – Конструкции паяльников
3.2Мягкие и твердые припои, их свойства и применение.
Пайка твердыми припоями примечательна тем, что при ее проведении участок стыковки изделий должен прогреваться до температур порядка 450-ти градусов и более.
Такие припои называются тугоплавкими, а полученное с их помощью соединение сохраняет свои прочностные характеристики даже при сильном термическом нагреве.
В отличие от твердых пайка мягкими припоями предполагает использование низкотемпературных расходных материалов, которые обеспечивают надежное сцепление при значительно меньшем нагреве (порядка 200-300 ℃).
Они, как правило, применяются, при пайке изделий, эксплуатируемых в нормальных температурных условиях, и не гарантируют сохранения контакта при сильном нагреве.
Возможности твердых припоев широко используются в тех сферах, где требуется получать шов, по своим прочностным свойствам занимающие промежуточное положение между сваркой и низкотемпературной пайкой.
При этом особое внимание уделяется сохранению структуры материалов в зоне контакта, которые после обработки не должны терять первоначальных характеристик. Твердосплавные соединения чаще всего востребованы в следующих ситуациях: производство металлорежущего инструмента, резцов с твердосплавными рабочими вставками; при изготовлении емкостей и сосудов, производимых на основе цветных металлов и из нержавейки; в автомастерских (при ремонте радиаторов и отдельных элементов трансмиссии), а также в тех местах, где применение сварки крайне нежелательно; при монтаже и ремонте трубок из твердых медных сплавов, установленных в холодильном и теплообменном оборудовании и работающих в условиях «критических» температур или повышенного давления; для надежного и прочного соединения тонкостенных предметов и деталей, испытывающих при эксплуатации повышенные нагрузки и упругие деформации. Применение техники твердой пайки в домашних условиях предполагает наличие газовой горелки, посредством которой можно обеспечить высокую степень нагрева в зоне контакта. Помимо этого, потребуется сам тугоплавкий припой, плавящийся при температурах свыше 450 градусов, а также специальная активная добавка, называемая флюсом.
Лишь при выполнении этих требований в результате паяльных работ удается получить достаточно надежное и твердое паяное соединение.
Рисунок 10 – Пайка твердыми припоями
3.3 Флюсы, их назначение и применение.
Флюсы — вещества, обеспечивающие удаление окисей спаиваемых металлов, образуемых при нагреве, а также защиту очищенных перед пайкой металлов от окисления. Флюсы способствуют также лучшему растеканию припоя при пайке.
Флюсы выбирают в зависимости от соединяемых пайкой металлов или сплавов и применяемого припоя, а также от вида монтажно-сборочных работ. Температура плавления флюса должна быть ниже температуры плавления припоя.
По действию, оказываемому на металл, флюсы разделяютна активные (кислотные), бескислотные, активированные, антикоррозийные и защитные.
Активные флюсы содержат в своем составе соляную кислоту, хлористые и фтористые металлы и т. д. Эти флюсы интенсивно растворяют оксидные пленки на поверхности металла, благодаря чему обеспечивается высокая механическая прочность соединения. Однако остаток флюса после пайки вызывает интенсивную коррозию соединения и основного металла.
При монтаже электроаппаратуры применение активных флюсов не допускается, так как с течением времени их остатки разъедают место пайки.
Активизированные флюсыготовят на основе канифоли с добавлением небольших количеств солянокислого или фосфорнокислого анилина, салициловой кислоты или солянокислого диэтиламина. Эти флюсы применяют при пайке большинства металлов и сплавов (железо, сталь, нержавеющая сталь, медь, бронза, цинк, нихром, никель, серебро), в том числе и оксидированных деталей из медных сплавов без предварительной зачистки. Активированными флюсами являются флюсы ЛТИ, в состав которых входит этиловый спирт (66 - 73%), канифоль (20 - 25%), солянокислый анилин (3 - 7%), триэтаноламин (1 - 2%). Флюс ЛТИ дает хорошие результаты при использовании оловянистых припоев ПОС-5 и ПОС-10, обеспечивая повышенную прочность спая. Для пайки меди и медных сплавов, константана, серебра, платины и ее сплавов применяют антикоррозийные флюсы. Они содержат в своем составе фосфорную кислоту с добавлением различных органических соединений и растворителей. В состав некоторых антикоррозийных флюсов входят органические кислоты. Остатки этих флюсов не вызывают коррозии. Антикоррозийный флюс ВТС состоит из 63% технического вазелина, 6,3% триэтаноламина, 6,3% салициловой кислоты и этилового спирта. Остатки флюса удаляют протиркой детали спиртом или ацетоном.
Защитные флюсы предохраняют ранее очищенную поверхность металла от окисления и не оказывают химического воздействия на металл. К этой группе относятся неактивные материалы: воск, вазелин, оливковое масло, сахарная пудра и др.
Для пайки твердыми припоями углеродистых сталей, чугуна, меди, медных сплавов в основном пользуются бурой (тетраборат натрия), которая представляет собой белый кристаллический порошок. Плавится она при температуре 741° С.
Для пайки латунных деталей серебряными припоями флюсом служит смесь 50% хлористого натрия (поваренной соли) и 50% хлористого кальция. Температура плавления 605° С.
Для пайки алюминия применяют флюсы, у которых температура плавления ниже температуры плавления применяемого припоя. Эти флюсы обычно содержат 30—50% хлористого калия.
Для пайки нержавеющих сталей, твердых и жароупорных сплавов медью, медно-цинковыми и медно-никелевыми припоямиприменяется смесь, состоящая из 50°/о буры и 50% борной кислоты, с добавлением хлористого цинка.
Для удаления остатков флюса после пайки твердыми припоями используют горячую воду и волосяную щетку.
3.4Пайка монтажных соединений. Технология монтажной пайки.
Пайка представляет собой процесс механического и электрического соединения ИЭТ путем смачивания и заполнения зазора между ними расплавленным припоем и сцепления за счет отверждения паяного шва.
Главными вопросами выбора, определяющими наилучшие технико-экономические показатели ЭА являются: марка припоя; метод пайки.
+ Традиционно используемый эвтектический сплав ПОС-61 (имп. Sn63/Pb37) обладает наилучшими показателями – низкой температурой плавления, хорошей смачиваемостью
В производстве, сплавы SnAgCu рассматриваются как наиболее перспективные. Наиболее лидирующие припои на их основе следующие: Sn3,9Ag0,6Cu; Sn3,8Ag0,7Cu; Sn3,0Ag0,5Cu, табл. 30.
На испытаниях SnAgCu проявляет функциональную эквивалентность эвтектическому сплаву SnPb(Ag). Однако SnAgCu плавится при 217°С, что на 34°С больше, чем SnPb.
Печатные платы, компоненты, флюсы, подверженные высоким температурам пайки, испытывают большие термодинамические воздействия, которые могут провоцировать разрушения, дефекты и снижать надежность межсоединений. Динамику этих процессов можно оценить из известных представлений об ускорении процессов термодеструкции. С увеличением температуры на каждые 8°С количество дефектов будет увеличиваться в два раза.
Более высокие температуры бессвинцовой пайки обусловливают необходимость в коренном пересмотре технологий и материалов по всей цепочке производства электронных изделий. Процесс управления бессвинцовой пайкой более труден, поскольку проходит в узких диапазонах технологических режимов. С повышением температуры формируется шлак, отслаиваются контактные площадки, взрываются компоненты (эффект "попкорн"). Необходим тщательный подбор флюсов. Очень важно, чтобы флюс работал в широком диапазоне температур: 130 - 320°С.
Чтобы избежать проблем расслоения и коробления оснований печатных плат, их необходимо изготавливать из материалов с большей температурой стеклования (Tg) - около 150°С и выше. Группа материалов типа FR-1, FR-2, FR-3 с Tg = 125°С, обычно используемая при пайке сплавом SnPb, уже не годится для пайки сплавом SnAgCu. Особенно критично поведение материала основания в процессе горячего облуживания.
Материалы FR-4 имеют Tg в диапазоне 130 - 150°С, что приемлемо для бессвинцовой пайки. Но стоимость таких материалов более чем на 30% выше. Для удешевления в состав армирующих компонентов вводят целлюлозную (СЕМ-1) или стеклянную (СЕМ- 3) бумагу (CEM - Composite Epoxy Material).