Файл: Техническая термодинамика цели и задачи. Основные понятия и определения рабочее тело, термодинамическая система (тдс), виды тдс.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.05.2024

Просмотров: 74

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
процессов, так и для течений, сопровож­дающихся трением.

Выше было указано, что к замкнуто­му объему рабочего тела, выделенному в потоке, применимо выражение первого закона термодинамики для закрытой системы, т.е. .

Сравнивая это выражение с уравне­нием *, получим:

, или

.

Величину называют располагаемой работой. В p, v-диаграмме она изображается заштрихованной площадью.

Применим первый закон термодина­мики к различным типам тепломеханиче­ского оборудования.
29. Способы переноса теплоты.

Теплопроводность

В чистом виде теплопроводность наблюдается только в сплошных твердых телах. Теплота передается непосредственно через материал или от одного материала другому при их соприкосновении Высокой теплопроводностью обладают плотные материалы — металл, железобетон, мрамор. Воздух имеет низкую теплопроводность. Поэтому через материалы с большим количеством замкнутых пор, заполненных воздухом, плохо передается теплота и они могут использоваться как теплоизоляционные (семищелевой кирпич, пенобетон, вспененный полиуретан, пенопласт).



Рис. 2.1.    Передача   теплоты через кирпичную    стену    теплопроводностью: 1 — кирпичная  кладка;   2 — штукатурка


Конвекция


Конвекция характерна для жидких и газообразных сред, где перенос теплоты происходит в результате движения молекул. Конвективный теплообмен наблюдается у поверхности стен при наличии температурного перепада между конструкцией и соприкасающимся с ней воздухом. В окнах жилых домов конвективный теплообмен происходит между поверхностями остекления, обращенными внутрь воздушной прослойки. Нагреваясь от внутреннего стекла, теплый воздух поднимается вверх. При соприкосновении с холодным наружным стеклом воздух отдает свое тепло и, охлаждаясь, опускается вниз (рис. 2.2).



Рис. 2.2. Схема передачи теплоты конвекцией в межстекольном пространстве оконного блока со спаренным остеклением

Излучение происходит в газообразной среде путем передачи теплоты с поверхности тела через пространство (в виде энергии электромагнитных волн). Благодаря лучистому теплообмену поверхность Земли обогревается Солнцем, находящимся от нее на расстоянии многих световых лет. Аналогичным образом осуществляется передача теплоты излучением между двумя поверхностями, расположенными в стене и разделенными воздушной прослойкой. Нагретая поверхность радиатора излучает теплоту и обогревает помещение. Чем   выше  температура поверхности  отопительного прибора, тем сильнее обогревается помещение (рис. 2.3).



Рис. 2.3. Схема теплообмена излучением    между отопительным прибором и человеком
30. Теплопроводность в плоских однослойных стенках.

Р
t



q=Const

tc1

tc2

x
ассмотрим однородную плоскую стенку толщиной , на поверхностях которой поддерживаются температуры tс1 и tс2, причем tс1>t

с2 (рис.2.2). температура изменяется только по толщине стенки - по одной координате х, коэффициент теплопроводности . Теплового потока в этом случае, в соответствии с законом Фурье,

определяется по формуле:

,

или

,

где , причем tс1>tс2;

- внутреннее термическое сопротивление теплопроводности стенки, (м2К)/Вт.

Распределение температур в плоской однородной стенке - линейное.

В большинстве практических задач приближенно предполагается, что коэффициент теплопроводности не зависит от температуры и одинаков по всей толщине стенки. значение находят в справочниках при средней температуре .

Тепловой поток (мощность теплового потока) определяется по формуле:
,
31. Теплопроводность в плоских многослойных стенках.
Многослойная плоская стенка

Р
t

1

q=Const

tc1

x

tc2

tc3


tc1

2

3

1 23
ассмотрим для тех же условий многослойную плоскую стенку с толщиной слоев 1, 2,…, n с соответствующими коэффициентами теплопроводности 1, 2,…, n (рисунок 9.4). Здесь слои плотно прилегают друг к другу.

В этом случае плотность теплового потока определяется по формуле:


Рисунок 9.4 - Распределение температур по толщине многослойной плоской стенки
,

где n - число слоев многослойной стенки;

tc1 и tc(n+1) - температуры на внешних границах многослойной стенки;

- полное термическое сопротивление многослойной плоской стенки.

Плотность теплового потока, проходящего через все слои, в стационарном режиме одинакова. А так как коэффициент теплопроводности  различен, то для плоской многослойной стенки распределение температур - ломанная линия.

Рассчитав тепловой поток через многослойную стенку, можно найти температуру на границе любого слоя. Для к-го слоя можно записать:

,
32. Физический смысл коэффициента теплопроводности. Уравнение Фурье.

Теория теплопроводности рассматривает тело как непрерывную среду. Согласно основному закону теплопроводности - закону Фурье - вектор плотности теплового потока, передаваемого теплопроводностью, пропорционален вектору градиента температуры:

,где - коэффициент теплопроводности, Вт/(мК). Он характеризует способность вещества, из которого состоит рассматриваемое тело, проводить теплоту.


Знак «-» указывает на противоположное направление вектора теплового потока и вектора градиента температуры. Вектор плотности теплового потока q всегда направлен в сторону наибольшего уменьшения температуры.

скалярная величина вектора плотности теплового потока:

,

Из формулы следует, что коэффициент теплопроводности определяет плотность теплового потока при градиенте температуры 1 К/м.

коэффициент теплопроводности является физическим параметром и зависит от химической природы вещества и его физического состояния (плотности, влажности, давления, температуры). Диапазоны изменения для различных материалов приведены на рисунке 9.2.




Теплопроводность при стационарном режиме

33. Теплопроводность в цилиндрической однослойной стенке.

Однородная цилиндрическая стенка

Задача о распространении тепла в цилиндрической стенке также одномерная, если ее рассматривать в цилиндрических координатах. температура изменяется только вдоль радиуса r, а по длине и по ее периметру остается неизменной.

В соответствии с законом Фурье, тепловой поток через однородную цилиндрическую стенку длиной l определяется по формуле: ,

Т