Файл: Техническая термодинамика цели и задачи. Основные понятия и определения рабочее тело, термодинамическая система (тдс), виды тдс.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.05.2024

Просмотров: 84

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
,

т. е. температурная зависимость энтро­пии при изобарном процессе тоже имеет логарифмический характер, но поскольку срv, то изобара в Т,s-диаграмме идет более полого, чем изохора.
23. Политропный процесс.

Любой произвольный процесс можно описать в р,v-координатах (по крайней мере на небольшом участке) уравнением

,

подбирая соответствующее значение п. Процесс, описываемый таким уравнением, называется политропным. Показатель политропы n может прини­мать любое численное значение в преде­лах от , но для данного процесса он является величиной посто­янной.

Из уравнения Клапейрона нетрудно получить выраже­ния, устанавливающие связь между р, vи Т в любых двух точках на политропе, аналогично тому, как это было сделано для адиабаты:

; ; . (5.1)

Работа расширения газа в политропном процессе имеет вид .

Так как для политропы в соответст­вии с (5.1)


,

то

(5.2)

Уравнение (5.1) можно преобразо­вать к виду:



Количество подведенной (или отве­денной) в процессе теплоты можно опре­делить с помощью уравнения первого закона термодинамики: .

Поскольку , то

,

где



представляет собой теплоемкость иде­ального газа в политропном процессе. При постоянных cv, kи п теплоемкость сn = const, поэтому политропный процесс иногда определяют как процесс с посто­янной теплоемкостью.

Изменение энтропии

.

Политропный процесс имеет обобща­ющее значение, ибо охватывает всю со­вокупность основных термодинамических процессов. Ниже приведены характери­стики термодинамических процессов.

Процесс

п



Изохорный





Изобарный

0



Изотермический

1



Адиабатный

k

0



На рисунке показано взаимное распо­

ложение на р, V- и Т, s-диаграммах политропных процессов с разными значения­ми показателя политропы. Все процессы начинаются в одной точке («в центре»).


Рисунок 5.5 - Изображение основных термоди­намических процессов идеального газа в р, v- и Т, s-координатах
Изохора (п= ± ) делит поле диаг­раммы на две области: процессы, нахо­дящиеся правее изохоры, характеризу­ются положительной работой, так как сопровождаются расширением рабочего тела; для процессов, расположенных ле­вее изохоры, характерна отрицательная работа.

Процессы, расположенные правее и выше адиабаты, идут с подводом теп­лоты к рабочему телу; процессы, лежа­щие левее и ниже адиабаты, протекают с отводом теплоты.

Для процессов, расположенных над изотермой ( = 1), характерно увеличе­ние внутренней энергии газа; процессы, расположенные под изотермой, сопро­вождаются уменьшением внутренней энергии.

Процессы, расположенные между адиабатой и изотермой, имеют отрица­тельную теплоемкость, так как и du(а следовательно, и dT), имеют в этой области противоположные знаки. В таких процессах , поэтому на производство работы при расширении тратится не только подводимая теплота, но и часть внутренней энергии рабочего тела.
24. Изохорный процесс.

При изохорном процессе выполняется условие

dv = 0 или v= const. Из уравнения состояния иде­ального газа следует, что p/T=R/v=const, т. е. давление газа прямо пропорционально его абсолютной темпе­ратуре:

.



Рисунок 5.1 - Изображение изохорного процесса в р,v- и T, s-координатах

Работа расширения в этом процессе равна нулю, так как dv= 0.

Количество теплоты, подведенной к рабочему телу в процессе
12 при , определяется как:



При переменной теплоемкости , где — средняя массовая изохорная теплоемкость в интервале темпера­тур от t1 до t2.

Так как 1= 0, то в соответствии с пер­вым законом термодинамики и





Поскольку внутренняя энергия идеально­го газа является функцией только его температуры, то полученные формулы справед­ливы для любого термодинамического процесса идеального газа.

Изменение энтропии в изохорном процессе определяется по формуле

,

т. е. зависимость энтропии от температу­ры на изохоре при сv = const имеет лога­рифмический характер.
25. Водяной пар.

Пар – это реальный газ в состоянии, близком к жидкой фазе (насыщению).

Водяной пар широко используется в качестве рабочего тела в теплоэнергетических и в промышленных установках. Он производится в котельных агрегатах при заданном постоянном давлении. На рисунке 1 дана pv-диаграмма для водяного пара.

Р исунок 1 – PV-диаграмма для водяного пара

Кривая I- вода при 00С;

Кривая II- вода при температуре кипения (или температуре насыщения) – нижняя пограничная кривая;

Кривая III– сухой насыщенный пар – верхняя пограничная кривая.

Точка К– это критическая точка, разделяющая обе пограничные кривые.

Кривые I,II,IIIделят всю диаграмму на три части:

1) область между IиII– жидкость;

2) область между IIиIII– смесь кипящей жидкости и пара, т.е. влажный насыщенный пар;

3) область правее III– перегретый пар.

Критическая точка К характеризует критическое состояние, при котором исчезает различие в свойствах пара и жидкости. Критическая температура является наивысшей температурой жидкости и её насыщенного пара. При температурах выше критической возможно существование только перегретого пара.


Критические параметры водяного пара: tкр=374,150С; ркр=22,129МПа;vкр=0,00326м3/кг.
26. T-S диаграмма водяного пара. Теплота парообразования

Ввиду сложности уравнений состояния для пара в расчетной практике они не применяются. Для практических целей используют таблицы термодинамических параметров состояния. Две таблицы составлены для определения теплофизических свойств насыщенной жидкости и сухого насыщенного пара, т.е. в них приведены: ts, ps, u¢, u², h¢, h², r, s¢, s². В качестве независимой переменной в первой из этих таблиц использована температура, а во второй - давление. В третьей таблице приведены u, h и s для недогретой до температуры насыщения воды и перегретого пара в широком диапазоне давлений и температур.

Параметры влажного пара могут быть рассчитаны по приведенным выше формулам с использованием параметров насыщенной жидкости и сухого пара, взятых из таблиц.

T, s-диаграмма водяного пара. Наряду с табличными данными в практических расчетах широко пользуются графическими методами решения задач. Для этих целей используют T, s и h, s - диаграммы для пара.

Рассмотрим диаграмму - T, s. Начальное состояние 1 кг воды при Т0 = 273 К и s0 = 0 изобразится точкой а (рис. 8.3), а в - изобара подогрева воды до температуры насыщения Ts. Точка в соответствует насыщенной жидкости, вс - процесс парообразования (кипения) при p = const и Ts = const. Следовательно, вс является одновременно изобарой и изотермой. Точка с соответствует сухому насыщенному пару. Любая точка между точками в и с (например точка г) будет соответствовать влажному насыщенному пару. Линия cd - изобара перегрева пара. Точка d соответствует перегретому пару. Линии ав и cd согласно уравнениям (8.7) и (8.24) являются логарифмическими кривыми.



Площади под кривыми аввс и cd изображают соответственно теплоту жидкости q¢, теплоту парообразования r и теплоту перегрева пара qп. Из выражений (8.13) и (8.20) следует, что x = (sx - s¢)/(s² - s¢), т.е. х = вг / вс (рис. 8.3).



Таким образом, весь процесс парообразования от состояния воды при 0 оС до состояния перегретого пара с температурой Тп изображается изобарой авcd. При другом, более высоком давлении р