Файл: Защита сетевой инфраструктуры предприятия.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 11.03.2024

Просмотров: 116

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Введение

1. Теоритическая часть организации защиты информации на предприятии

1.1 Организация компьютерной безопасности и защиты информации

1.2 Средства защита информации от несанкционированного доступа

1.3 Защита информации в компьютерных сетях

1.4 Криптографическая защита информации

1.5 Электронная цифровая подпись

1.6 Защита информации от компьютерных вирусов

1.7 Применение локальных вычислительных сетей

1.8 Характеристики локально-вычислительных сетей

1.9 Основные функции локально-вычислительных сетей

1.10 Разделение локальных сетей в зависимости от административных взаимоотношений между ЭВМ

1.11 Структуры функционирования локальных сетей

1.12 Способы построения локальных сетей

1.13 Монтаж локально-вычислительных сетей

1.14 Условия обработки персональных данных

2. Аналитическая часть исследования защиты ЛВС на ОАО «Марийский машиностроительный завод»

2.1 Краткая характеристика ОАО «Марийского машиностроительного завода»

2.2 Характеристика локально-вычислительной сети ОАО «Марийского машиностроительного завода»

2.3 Анализ возможных типов атак и модели нарушителя осуществляющего атаки на локальную сеть ОАО «Марийского машиностроительного завода»

3. Разработка мер и выбор средств обеспечения информационной безопасности локальной вычислительной сети ОАО «Марийский машиностроительный завод»

3.1 Организационные меры. Политика безопасности

3.2. Мероприятия по повышению защищенности ЛВС

3.3 Внедрение комплексной системы защиты информации

4. Экономическая часть. Оценка стоимости предлагаемых мер

4.1 Расчет затрат

Заключение

Список использованной литературы

Приложение 1.

Приложение 2.

1.8 Характеристики локально-вычислительных сетей

- Высокоскоростные каналы (1- 400 Мбит\с), принадлежащие преимущественно одному пользователю[26];

- Расстояние между рабочими станциями, подключаемыми к локальной сети, обычно составляет от нескольких сотен до нескольких тысяч метров;

- Передача данных между станциями пользователей компьютеров;

- Децентрализация терминального оборудования, в качестве которого используются микропроцессоры, дисплеи, кассовые устройства и т.д.

- Передача данных абонентам, подключенным к сети, по общему кабелю.

1.9 Основные функции локально-вычислительных сетей

- Обеспечение одновременного доступа к оборудованию, программному обеспечению и информации, объединенных в сеть;

- Минимизация риска несанкционированного доступа к информации и сетевым ресурсам;

- Разграничение доступа к информации и сетевым ресурсам;

- Обеспечение быстрого и конфиденциального обмена и одновременной работы с информацией определенному кругу лиц;

- Контроль над информационными потоками, в том числе входящими и исходящими;

- Разграничение контрольных функций и ответственных лиц на каждом узле (за каждый узел отвечает системный администратор, выполняющий обслуживающую и, как правило, контрольные функции);

- Оптимизация расходов на ПО и оборудование за счет их коллективного использования (например один принтер на несколько отделов и др.)

1.10 Разделение локальных сетей в зависимости от административных взаимоотношений между ЭВМ

- иерархические или централизованные;

- одноранговые.

Локальные сети в зависимости от физических и логических взаимоотношений между ЭВМ отличаются архитектурой (Ethernet, Token Ring, FDDI и т.д.) и топологией (шинная, кольцевая, звезда и т.д.).

В локальных сетях реализуется технология «клиент – сервер». Сервер – это объект (компьютер или программа) который предоставляет сервисные услуги, а клиент – это объект (компьютер или программа), который запрашивает сервер предоставить эти услуги[26].


1.11 Структуры функционирования локальных сетей

Структура локальной сети определяется принципом управления и типом связи, зачастую она основывается на структуре обслуживаемой организации. Применяются виды топологии: шинная, кольцевая, радиальная, древовидная. Наиболее распространены первые два вида, за счет эффективного использования каналов связи, простоты управления, гибких возможностей расширения и изменения.

Рисунок 1.1 – Топология «шина»

Все компьютеры связываются в цепочку, подключением к магистральному кабельному сегменту (стволу), на его концах размещаются «терминаторы», для гашения сигнала, распространяющегося в обе стороны. Компьютеры в сети соединяются коаксиальным кабелем с тройниковым соединителем. Пропускная способность сети – 10 Мбит/с, для современных приложений, активно использующих видео и мультимедийные данные, этого недостаточно. Преимущество этой топологии заключается в низкой стоимость проводки и унификации подключений.

Рисунок 1.2 – Топология «дерево»

Более развитая конфигурация типа “шина”. К общей магистральной шине через активные повторители или пассивные размножители присоединяются несколько простых шин.

локальный вычислительный сеть информация защита

Рисунок 1.3 – Топология «звезда»

Является наиболее быстродействующей из всех топологий, информация между периферийными рабочими станциями проходит через центральный узел вычислительной сети. Центральный узел управления – файловый сервер может реализовать оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Кабельное соединение довольно простое, так как каждая рабочая станция связана только с центральным узлом. Затраты на прокладку кабелей достаточно высокие, особенно когда центральный узел географически расположен не в центре топологии. При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

В случае последовательностной конфигурации ЛВС каждое устройство подключения к физической среде передает информацию только одному устройству. При этом снижаются требования к передатчикам и приемникам, поскольку все станции активно участвуют в передаче.


Рисунок 1.3 – Топология «кольцо»

Компьютеры соединяются сегментами кабеля, имеющего форму кольца, принципиально идентична шинной, за исключением необходимости использования «терминаторов». В случае неисправности одного из сегментов сети вся сеть выходит из строя.

Сигналы передаются только в одном направлении. Каждая станция непосредственно соединена с двумя соседними, но прослушивает передачу любой станции. Кольцо составляют несколько приемопередатчиков и соединяющая их физическая среда. Все станции могут иметь права равного доступа к физической среде. При этом одна из станций может выполнять роль активного монитора, обслуживающего обмен информацией. Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко. Подключение новой рабочей станции требует выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

Компьютеры могут соединяться между собой, используя различные среды доступа: медные проводники (витая пара), оптические проводники (оптические кабели) и через радиоканал (беспроводные технологии). Проводные, оптические связи устанавливаются через Ethernet, беспроводные — через Wi-Fi, Bluetooth, GPRS и прочие средства. Чаще всего локальные сети построены на технологиях Ethernet или Wi-Fi. Следует отметить, что ранее использовались протоколы Frame Relay, Token ring, которые на сегодняшний день встречаются всё реже, их можно увидеть лишь в специализированных лабораториях, учебных заведениях и службах.

1.12 Способы построения локальных сетей

Компьютерная сеть – это сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов[26].

Компьютерную сеть можно представить многослойной моделью, состоящей из слоев:


- компьютеры;

- коммуникационное оборудование;

- операционные системы;

- сетевые приложения.

Компьютеры

Основой любой локальной сети являются ПК, которые подключаются к сети с помощью сетевой карты. Все компьютеры локальных сетей можно разделить на два класса: серверы и рабочие станции.

Коммуникационное оборудование

Сетевой адаптер – это специальное устройство, которое предназначено для сопряжения компьютера с локальной сетью и для организации двунаправленного обмена данными в сети. Сетевая карта вставляется в свободный слот расширения на материнской плате и оборудована собственным процессором и памятью, а для подключения к сети имеет разъем типа RJ-45. Наиболее распространены карты типа PCI, которые вставляются в слот расширения PCI на материнской плате. В зависимости от применяемой технологии Ethernet, Fast Ethernet или Gigabit Ethernet и сетевой карты скорость передачи данных в сети может быть: 10, 100 или 1000 Мбит/с.

Сетевые кабели.

В качестве кабелей соединяющих отдельные ПК и коммуникационное оборудование в локальных сетях применяются:

1. Витая пара – передающая линия связи, которая представляет собой два провода, перекрученных друг с другом с определенным шагом с целью снижения влияния электромагнитных полей[25].

2. Коаксиальный кабель – кабель, который состоит из одного центрального проводника в изоляторе и второго проводника расположенного поверх изолятора[25].

3. Оптический кабель – это кабель, в котором носителем информации является световой луч, распространяющийся по оптическому волокну[25].

Кроме того, в качестве передающей среды в беспроводных локальных сетях используются радиоволны в микроволновом диапазоне.

К коммуникационному оборудованию локальных сетей относятся: трансиверы, повторители, концентраторы, мосты, коммутаторы, маршрутизаторы и шлюзы.

Часть оборудования (приемопередатчики или трансиверы, повторители или репитеры и концентраторы или hubs) служит для объединения нескольких компьютеров в требуемую конфигурацию сети. Соединенные с концентратором ПК образуют один сегмент локальной сети, т.е. концентраторы являются средством физической структуризации сети, так как, разбивая сеть на сегменты, упрощают подключение к сети большого числа ПК.

Другая часть оборудования (мосты, коммутаторы) предназначены для логической структуризации сети. Так как локальные сети являются широковещательными (Ethernet и Token Ring), то с увеличением количества компьютеров в сети, построенной на основе концентраторов, увеличивается время задержки доступа компьютеров к сети и возникновению коллизий. Поэтому в сетях построенных на хабах устанавливают мосты или коммутаторы между каждыми тремя или четырьмя концентраторами, т.е. осуществляют логическую структуризацию сети с целью недопущения коллизий.


Третья часть оборудования предназначена для объединения нескольких локальных сетей в единую сеть: маршрутизаторы (routers), шлюзы (gateways). К этой части оборудования можно отнести и мосты (bridges), а также коммутаторы (switches).

Повторители (repeater) – устройства для восстановления и усиления сигналов в сети, служащие для увеличения ее длины[26].

Приемопередатчики (трансиверы) – это устройства, предназначенные для приема пакетов от контроллера рабочих станций сети и передачи их в сеть. Трансиверы (конверторы) могут преобразовывать электрические сигналы в другие виды сигналов (оптические или радиосигналы) с целью использования других сред передачи информации[26].

Концентраторы или хабы (Hub) – устройства множественного доступа, которые объединяет в одной точке отдельные физические отрезки кабеля, образуют общую среду передачи данных или сегменты сети, т.е. хабы используются для создания сегментов и являются средством физической структуризации сети[26].

Мосты (bridges) – это программно – аппаратные устройства, которые обеспечивают соединение нескольких локальных сетей между собой. Мосты предназначены для логической структуризации сети или для соединения в основном идентичных сетей, имеющих некоторые физические различия[26].

Коммутаторы (switches) - программно – аппаратные устройства являются быстродействующим аналогом мостов, которые делят общую среду передачи данных на логические сегменты[26]. Логический сегмент образуется путем объединения нескольких физических сегментов с помощью одного или нескольких концентраторов. Каждый логический сегмент подключается к отдельному порту коммутатора. При поступлении данных с компьютера - отправителя на какой-либо из портов коммутатор передаст эти данные, но не на все порты, как в концентраторе, а только на тот порт, к которому подключен сегмент, содержащий компьютер - получатель данных.

Маршрутизаторы (routers). Эти устройства обеспечивают выбор маршрута передачи данных между несколькими сетями, имеющими различную архитектуру или протоколы[26]. Они обеспечивают сложный уровень сервиса, так как могут выполнять “интеллектуальные” функции: выбор наилучшего маршрута для передачи сообщения, адресованного другой сети; защиту данных; буферизацию передаваемых данных; различные протокольные преобразования. Маршрутизаторы применяют только для связи однородных сетей.

Шлюзы (gateway) – устройства (компьютер), служащие для объединения разнородных сетей с различными протоколами обмена[26]. Шлюзы выполняют протокольное преобразование для сети, в частности преобразование сообщения из одного формата в другой.