Файл: Курсовая работа по дисциплине Механика Гравитационное поле. Космические скорости. Законы Кеплера.docx

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 16.03.2024

Просмотров: 22

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


где   – первая космическая скорость; G – гравитационная постоянная; M – масса объекта; R – радиус объекта;

Попробуйте подставить в формулу необходимые значения (G – гравитационная постоянная всегда равна 6,67; масса Земли равна 5,97·1024 кг, а её радиус 6371 км) и найти первую космическую скорость нашей планеты.

В результате мы получим скорость, равную 7,9 км/с. Но почему, двигаясь именно с такой скоростью, космический аппарат не будет падать на Землю или улетать в космическое пространство? Улетать в космос он не будет из-за того, что данная скорость пока еще слишком мала, чтобы преодолеть гравитационное поле, а вот на Землю он как раз и будет падать. Но только из-за высокой скорости он все время будет «уходить» от столкновения с Землей, продолжая в то же время свое «падение» по круговой орбите, вызванной искривлением пространства.



Рисунок 1

По такому же принципу «работает» и Международная Космическая Станция. Находящиеся на ней космонавты все время проводят в постоянном и непрекращающемся падении, которое не заканчивается трагически вследствие высокой скорости самой станции, из-за чего та стабильно «промахивается» мимо Земли. Значение скорости рассчитывается исходя из высоты орбиты, на которой летает станция.


    1. Вторая космическая скорость


Но что делать, если мы захотим, чтобы космический аппарат покинул пределы нашей планеты и не был зависим от ее гравитационного поля? Разогнать его до второй космической скорости! Итак, вторая космическая скорость – это минимальная скорость, которую необходимо придать физическому объекту, чтобы он преодолел гравитационное притяжение небесного тела и покинул его замкнутую орбиту.

Значение второй космической скорости тоже, зависит от массы и радиуса небесного тела, поэтому для каждого объекта она будет своей. Например, чтобы преодолеть гравитационное притяжение Земли, космическому аппарату необходимо набрать минимальную скорость 11.2 км/с, Юпитера — 61 км/с, Солнца — 617,7 км/с.



Рисунок 2

Вторую космическую скорость(
) можно рассчитать, используя следующую формулу:



где    – вторая космическая скорость; G – гравитационная постоянная; M – масса объекта; R – радиус объекта;

Но если известна первая космическая скорость исследуемого объекта ( ), то задача облегчается в разы, и вторая космическая скорость ( ) быстро находится по формуле:



 вторая космическая формула черной дыры больше 299 792 км/c, то есть больше скорости света. Именно поэтому ничто, даже свет не может вырваться за ее пределы.


    1. Третья космическая скорость


Помимо первой и второй комических скоростей существуют третья и четвертая, достичь которых нужно для того, чтобы выйти за пределы нашей Солнечной системы и галактики соответственно.

Третья космическая скорость – это минимальный показатель ускорения космического аппарата, который необходимо достичь для преодоления гравитационного притяжения не только Земли, но и Солнца.

При достижении третей космической скорости, летательные аппараты имеют возможность покинуть пределы Солнечной системы.

Третья космическая скорость для нашей планеты равна 46,9 км/с. Это колоссальный показатель скорости, не так ли? Чтобы его достичь ученые идут на хитрости.

При запуске ракет для достижения высокого ускорения используют орбитальное ускорение планеты равное 29,8 км/с и осевое вращение равное 0,5 км/с. В силу этого для получения третьей космической скорости достаточно разогнать аппарат на Земле до 16,6 км/с, что в сумме даст необходимые 46,9 км/с.

Впервые третью космическую скорость, достигнул космический аппарат «Новые горизонты». Покидая Землю, аппарат достиг скорости в 16,26 км/с. Относительно Солнца скорость была равна 45 км/с. Третья космическая скорость была достигнута за счет гравитационного маневра вокруг Юпитера, что прибавило 4 километра к скорости.


    1. Четвертая космическая скорость


В современной астрономии четвертой космической скоростью принято считать ускорение, летательного аппарата или другого тела, которое позволяет преодолеть силу притяжения галактики.



Ученые говорят, что четвертая космическая скорость не является постоянной величиной. Для каждого участка галактики она будет иметь разное значение.

Четвертая космическая скорость в пределах нашей Солнечной системы примерно равна 550 километрам в секунду. Но это и это относительный показатель, который зависит не только от расстояния к центру галактики, но и от перераспределения вещества – скрытая масса.

Наше Солнце двигается вокруг центра Млечного пути со скоростью 217 км/с. Если бы этот показатель увеличить в 3 раза, то Солнце могло бы покинуть состав галактики.

Значительный импульс ускорения могут получить звезды, находящиеся вблизи сверхмассивной черной дыры в центре Млечного пути. Иногда они могут разгонятся до 4000 км/с и вылетать с центра галактики как «пушечные ядра».



Рисунок 3

Глава 3. Законы Кеплера


  1. Предыстория законов


Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник — объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами — Сатурна и Юпитера — он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса — тетраэдр (правильный четырехгранник) и т. д. Шесть сфер планет, пять вписанных между ними правильных многогранников — казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. По меткому замечанию современного британского биолога Дж. Холдейна (J. B. S. Haldane), «идея Вселенной как геометрически совершенного произведения искусства оказалась еще одной прекрасной гипотезой, разрушенной уродливыми фактами». Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.


Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге (Tycho Brahe, 1546–1601), Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Наша задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона.

    1. Закон первый

Первый закон описывает геометрию траекторий планетарных орбит. Возможно, вы помните из школьного курса геометрии, что эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек — фокусов — равна константе. Если это слишком сложно для вас, имеется другое определение: представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, — это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно — Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.


Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было, прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности. Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

    1. Закон второй

Второй закон описывает изменение скорости движения планет вокруг Солнца. Чтобы лучше понять его физический смысл, вспомните свое детство. Наверное, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты кружатся вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета.

Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать всё сначала —