Файл: Тема 1 клетка Вопрос Химический состав, организация плазмолеммы. Функции плазмолеммы.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 17.03.2024

Просмотров: 352

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Репаративная регенерация развивается после повреждения мышечных волокон. При этом способ регенерации зависит от величины дефекта. При значительных повреждениях на протяжении мышечного волокна миосателлиты в области повреждения и в прилежащих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где выстраиваются в цепочки, формируя миотрубку. Последующая дифференцировка миотрубки приводит к восполнению дефекта и восстановлению целостности мышечного волокна. В условиях небольшого дефекта мышечного волокна на его концах, за счет регенерации внутриклеточных органелл, образуются мышечные почки, которые растут навстречу друг другу, а затем сливаются, приводя к закрытию дефекта. Однако, репаративная регенерация и восстановление целостности мышечных волокон могут осуществляться при определенных условиях: во-первых, при сохраненной двигательной иннервации мышечных волокон, во-вторых, если в область повреждения не попадают элементы соединительной ткани (фибробласты). Иначе на месте дефекта мышечного волокна развивается соединительно-тканный рубец.

Вопрос 15. Сердечная мышечная ткань. Происхождение и структурная организация сердечных мышечных волокон. Вставочные диски.

Происхождение. Кардиомиогенез.Миобласты происходят из клеток спланхнической мезодермы, окружающей эндокардиальную трубку. После ряда митотических делений Gj-миобласты начинают синтез сократительных и вспомогательных белков и через стадию G0-миобластов дифференцируются в кардиомиоциты, приобретая вытянутую форму. В отличие от поперечно-полосатой мышечной ткани скелетного типа, в кардиомиогенезе не происходит обособления камбиального резерва, а все кардиомиоциты необратимо находятся в фазе G0 клеточного цикла.

Структурно-функциональной единицей является клетка —кардиомиоцит. В отличие от скелетной мышечной ткани, миофибриллы кардиомиоцитов представляют собой не отдельные цилиндрические образования, а по существу сеть, состоящую из анастомозирующих миофибрилл, так как некоторые миофиламенты как бы отщепляются от одной миофибриллы и наискось продолжаются в другую. Кроме того, темные и светлые диски соседних миофибрилл не всегда располагаются на одном уровне, и потому поперечная исчерченность в кардиомиоцитах выражена не столь отчетливо, как в скелетных мышечных волокнах. Механизм сокращения в кардиомиоцитах практически не отличается от такового в скелетных мышечных волокнах.


Сократительные кардиомиоциты, соединяясь встык друг с другом, образуют функциональные мышечные волокна, между которыми имеются многочисленные анастомозы. Благодаря этому из отдельных кардиомиоцитов формируется сеть — функциональный синтиций. Наличие щелевидных контактов между кардиомиоцитами обеспечивает одновременное и содружественное их сокращение вначале в предсердиях, а затем и в желудочках.

Области контактов соседних кардиомиоцитов носят название вставочных дисков. Фактически, никаких дополнительных структур (диском между кардиомиоцитами нет. Вставочные диски — это места контактов цитолеммы соседних кардиомиоцитов, включающие в себя простые, десмосомные и щелевидные контакты. Обычно во вставочных дисках различают поперечный и продольный фрагменты. В области поперечных фрагментов имеются расширенные десмосомные соединения. В этих же местах с внутренней стороны плазмолемм прикрепляются актиновые филаменты саркомеров. В области продольных фрагментов локализуются щелевидные контакты. Посредством вставочных дисков обеспечивается как механическая, так и метаболическая (прежде всего ионная) связь кардиомиоцитов.

Вопрос 16. Типы кардиомиоцитов. Рабочие, проводящие, секреторные кардиомиоциты. Их строение и функции.

Структурно-функциональной единицей является клетка — кардиомиоцит. По строению и функциям кардиомиоциты подразделяются на две основные группы:

  • типичные или сократительные кардиомиоциты, образующие своей совокупностью миокард;

Сократительный кардиомиоцит представляет собой почти прямоугольную клетку 50—120 мкм в длину, шириной 15—20 мкм, в центре которой локализуется обычно одно ядро. Покрыт снаружи базальной пластинкой. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии. Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующими канальцами. Терминальные цистерны и триады отсутствуют. Т-канальцы имеются, но они короткие, широкие и образованы не только углублением плазмолеммы, но и базальной пластинки. Сократительные кардиомиоциты, соединяясь встык друг с другом, образуют функциональные мышечные волокна, между которыми имеются многочисленные анастомозы. Благодаря этому из отдельных кардиомиоцитов формируется сеть —

функциональный синтиций. Наличие щелевидных контактов между кардиомиоцитами обеспечивает одновременное и содружественное их сокращение вначале в предсердиях, а затем и в желудочках.

Сократительные кардиомиоциты предсердий и желудочков несколько отличаются между собой по морфологии и функциям. Так, кардиомиоциты предсердий в саркоплазме содержат меньше миофибрилл и митохондрий, в них почти не выражены Т-канальцы, а вместо них под плазмолеммой выявляются в большом числе везикулы и кавеолы — аналоги Т-канальцев. Кроме того, в саркоплазме предсердных кардиомиоцитов у полюсов ядер локализуются специфические предсердные гранулы, состоящие из гликопротеиновых комплексов. Выделяясь из кардиомиоцитов в кровь предсердий, эти вещества влияют на уровень давления крови в сердце и сосудах, а также препятствуют образованию тромбов в предсердиях. Следовательно, предсердные кардиомиоциты, кроме сократительной, обладают и секреторной функцией. В желудочковых кардиомиоцитах более выражены сократительные элементы, а секреторные гранулы отсутствуют.

  • атипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся в свою очередь на три разновидности. Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты.

По своей морфологии атипичные кардиомиоциты отличаются от типичным рядом особенностей:

  • они крупнее (длина 100 мкм, толщина 50 мкм);

  • в цитоплазме содержимся мало миофибрилл, которые расположены неупорядочено и потому атипичные кардиомиоциты не имеют поперечной исчерченности;

  • плазмолемма не образует Т-канальцев;

  • во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты.

Атипичные кардиомиоциты различных отделов проводящей системы отличаются между собой по структуре и функциям и подразделяются на три основные разновидности:

  • Р-клетки (пейсмекеры) водители ритма (I типа);

  • переходные клетки (II типа);

  • клетки пучка Гиса и волокон Пуркинье (III тип).

Клетки I типа (Р-клетки) составляют основу синусо-предсердного узла, а также в небольшом количестве содержатся в атриовентрикулярном узле. Эти клетки способны самостоятельно генерировать с определенной частотой биопотенциалы и передавать их на переходные клетки (II типа), а последние передают импульсы на клетки III типа, от которых биопотенциалы передаются на сократительные кардиомиоциты.


Вопрос 17. Проводящая система сердца. Клеточные элементы проводящей системы, их строение, функции.

Атипичные кардиомиоциты образуют проводящую систему сердца, состоящую из:

  • синусо-предсердного узла;

  • предсердно-желудочкового узла;

  • предсердно-желудочкового пучка (пучка Гиса): ствол, правая и левая ножки;

  • концевые разветвления ножек — волокна Пуркинье.

Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты.

По своей морфологии атипичные кардиомиоциты отличаются от типичным рядом особенностей:

  • они крупнее (длина 100 мкм, толщина 50 мкм);

  • в цитоплазме содержимся мало миофибрилл, которые расположены неупорядочено и потому атипичные кардиомиоциты не имеют поперечной исчерченности;

  • плазмолемма не образует Т-канальцев;

  • во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты.

Атипичные кардиомиоциты различных отделов проводящей системы отличаются между собой по структуре и функциям и подразделяются на три основные разновидности:

  • Р-клетки (пейсмекеры) водители ритма (I типа);

  • переходные клетки (II типа);

  • клетки пучка Гиса и волокон Пуркинье (III тип).

Клетки I типа (Р-клетки) составляют основу синусо-предсердного узла, а также в небольшом количестве содержатся в атриовентрикулярном узле. Эти клетки способны самостоятельно генерировать с определенной частотой биопотенциалы и передавать их на переходные клетки (II типа), а последние передают импульсы на клетки III типа, от которых биопотенциалы передаются на сократительные кардиомиоциты.

Вопрос 18. Иннервация сердечной мышцы.

ДВИГАТЕЛЬНАЯ ИННЕРВАЦИЯ СЕРДЦА

На деятельность сердца - сложной авторегуляторной и регулируемой системы - оказывает модулирующее влияние множество факторов, в т.ч. двигательная вегетативная иннервация - парасимпатическая и симпатическая.

Парасимпатическая иннервация осуществляется блуждающим нервом, а симпатическая - адренергическими нейронами шейного верхнего, шейного среднего и звездчатого (шейно-грудного) ганглиев. Терминальные отделы аксонов вблизи кардиомиоцитов имеют варикозные расширения (см. рис. 7-29), регулярно расположенные по длине аксона на расстоянии 5-15 мкм друг от друга. Вегетативные нейроны не образуют нервно-мышечных синапсов, характерных для скелетной мышцы. Варикозности содержат нейромедиаторы, откуда и происходит их секреция. Расстояние от варикозностей до кардиомиоцитов в среднем составляет около 1 мкм. Молекулы нейромедиаторов высвобождаются в межклеточное пространство и путём диффузии достигают своих рецепторов в плазмолемме кардиомиоцитов. 


Парасимпатическая иннервация сердца. Преганглионарные волокна, идущие в составе блуждающего нерва, заканчиваются на нейронах сердечного сплетения и в стенке предсердий. Постганглионарные волокна преимущественно иннервируют синусно-предсердный узел, предсердно-желудочковый узел и предсердные кардиомиоциты. Парасимпатическое влияние вызывает уменьшение частоты генерации импульсов пейсмейкерами (отрицательный хронотропный эффект), снижение скорости проведения импульса через предсердно-желудочковый узел (отрицательный дромотропный эффект) в волокнах Пуркинье, уменьшение силы сокращения рабочих предсердных кардиомиоцитов (отрицательный инотропный эффект).

Симпатическая иннервация сердца. Преганглионарные волокна нейронов интермедиолатеральных столбов серого вещества спинного мозга образуют синапсы с нейронами паравертебральных ганглиев. Постганглионарные волокна нейронов среднего шейного и звездчатого ганглиев иннервируют синусно-предсердный узел, предсердно-желудочковый узел, предсердные и желудочковые кардиомиоциты. Активация симпатических нервов вызывает увеличение частоты спонтанной деполяризации мембран водителей ритма (положительный хронотропный эффект), облегчение проведения импульса через предсердно-желудочковый узел (положительный дромотропный эффект) в волокнах Пуркинье, увеличение силы сокращения предсердных и желудочковых кардиомиоцитов (положительный инотропный эффект).





Вопрос 19. Гуморальная регуляция сокращения и расслабления кардиомиоцитов.

В сокращении сердечных мышечных клеток уча­ствуют два рецепторных белка: потенциалзависимый дигидропиридиновый рецептор мембраны t-трубочек и рианодиновый рецептор мембраны сарко­плазматического ретикулума. Оба белка являются медленными кальциевы­ми ионными каналами. Деполяризация мембраны кардимиоцитов при рас­пространении по их мембране потенциала действия открывают потенциал­зависимые кальциевые ионные каналы мембраны t-трубочек. Ионы каль­ция по концентрационному градиенту поступают внутрь кардиомиоцитов и связываются с кальмодулином, расположенным на рианодиновом рецепторе или кальциевом ионном канале саркоплазматического ретикулума. Белок кальмодулин открывает кальциевые ионные каналы саркоплазматического ретикулума, и концентрация ионов Са2+ в саркоплазме повышается до по­роговой (примерно 1 мкМ/л). Кальмодулин осуществляет взаимодействие в кардиомиоцитах между дигидропиридиновыми рецепторами мембраны t- трубочек и рианодиновыми рецепторами мембраны саркоплазматического ретикулума, за счет его активации внеклеточными ионами Са