Файл: Тема 1 клетка Вопрос Химический состав, организация плазмолеммы. Функции плазмолеммы.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 17.03.2024
Просмотров: 355
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
2+. Открытие кальциевых ионных каналов саркоплазматического ретикулума в кардиомиоцитах при участии белка кальмодулина вызывает выход этих ионов в межфибриллярное пространство кардиомиоцитов. В кардиомиоцитах ионы кальция связываются с субъединицей С тропонина тропомиозинового комлекса. Связывание ионов Са2+ с тропонином С уменьшает плотность электростатической связи тропонина Т и тропомиозина относительно тонких филаментов и тропомиозиновый комплекс, смещаясь с периферической части глобулярного актина в зону контакта двух белковых нитей спирали актинового филамента, открывает на нем места связывания головок поперечных мостиков миозина с актином.
Основной процесс, определяющий расслабление кардиомиоцитов, — этоудаление ионов Кальция из саркоплазмы. При этом комплексы Са2+ с тропонином С распадаются, тропомиозин смещается по отношению к актиновым филаментам и закрывает их активные центры — сокращение прекращается. Существует три механизма удаления ионов Са2+ из саркоплазмы кардиомиоцитов:
1) Са-насосы плазматической мембраны и саркоплазматического ретикулума. Удаляют Са2+ во внеклеточную среду и цистерны саркоплазматического ретикулума. Составной их частью является Са-АТФ-аза, которая для осуществления активного транспорта ионов Са2+ использует энергию АТФ;
2) Na-Ca-обменный механизм. Удаляет ионы Са2+ во внеклеточную среду. Является разновидностью вторичного активного транспорта (антипорта). Использует энергию градиента концентраций ионов натрия по обе стороны плазматической мембраны, поэтому зависит от работы Na-K-насоса, создающего этот градиент;
3) Са-аккумулирующая функция митохондрий. Активируется только при значительном повышении содержания ионов Са2+ в саркоплазме, что чаще всего бывает в условиях патологии. Удаление Са2+ из саркоплазмы в матрикс митохондрий происходит за счет энергии, освобождающейся в процессе транспорта электронов по дыхательной цепи.
Вопрос 20. Гладкомышечная клетка: строение клетки, сократительный аппарат, механизмы сокращения и расслабления.
Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и сосудов является миоцит. Представляет собой чаще всего веретенообразную клетку (длиной 20—500 мкм, диаметром 5—8 мкм), покрытую снаружи базальной пластинкой, но встречаются и отростчатые миоциты. В центре располагается вытянутое ядро, по полюсам которого локализуются общие органеллы: зернистая эндоплазматическая сеть, пластинчатый комплекс, митохондрии, цитоцентр. В цитоплазме содержатся толстые (17 нм) миозиновые и тонкие (7 нм) актиновые миофиламенты, которые располагаются в основном параллельно друг другу вдоль оси миоцита и не образуют А и I диски, чем и объясняется отсутствие поперечной исчерченности миоцитов. В цитоплазме миоцитов и на внутренней поверхности плазмолеммы встречаются многочисленные плотные тельца, к которым прикрепляются актиновые, миозиновые, а так же промежуточные филаменты. Плазмолемма образует небольшие углубления — кавеолы, которые рассматриваются как аналоги Т-канальцев. Под плазмолеммой локализуются многочисленные везикулы, которые вместе с тонкими канальцами цитоплазмы являются элементами саркоплазматической сети.
Механизм сокращения в миоцитах в принципе сходен с сокращением саркомеров в миофибриллах в скелетных мышечных волокнах. Он осуществляется за счет взаимодействия и скольжения актиновых миофиламентов вдоль миозиновых. Для такого взаимодействия также необходимы энергия в виде АТФ, ионы кальция и наличие биопотенциала. Биопотенциалы поступают от эфферентных окончаний вегетативных нервных волокон непосредственно на миоциты или опосредованно от соседних клеток через щелевидные контакты и передаются через кавеолы на элементы саркоплазматической сети, обуславливая выход из них ионов кальция в саркоплазму. Под влиянием ионов кальция развиваются механизмы взаимодействия между актиновыми и миозиновыми филаментами, аналогичные тем, которые происходят в саркомерах скелетных мышечных волокон, в результате чего происходит скольжение названных миофиламентов и перемещение плотных телец в цитоплазме. В миоцитах, кроме актиновых и миозиновых филаментов, имеются еще промежуточные, которые одним концом прикрепляются к цитоплазматическим плотным тельцам, а другим — прикрепительным тельцам на плазмолемме и таким образом передают усилия взаимодействия актиновых и миозиновых филаментов на сарколемму миоцита, чем и достигается его укорочение.
Вопрос 21. Дифференцировка и типы ГМК. Иннервация ГМК. Регенерация ГМК. Организация ГМК как гладкомышечная ткань. Примеры локализации ГМК и гладкомышечной ткани.
Дифференцировка и типы ГМК:
Иннервация ГМК: Эфферентная иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой. При этом, терминальные веточки аксонов эфферентных вегетативных нейронов, проходя по поверхности нескольких миоцитов, образуют на них небольшие варикозные утолщения, которые несколько прогибают плазмолемму и образуют мионевральные синапсы. При поступлении нервных импульсов в синаптическую щель выделяются медиаторы (ацетилхолин или норадреналин), и обуславливают деполяризацию мембран миоцитов и последующее их сокращение. Через щелевидные контакты биопотенциалы переходят из одного миоцита на другой, что сопровождается возбуждением и сокращением и тех гладкомышечных клеток, которые не содержат нервных окончаний. Возбуждение и сокращение миоцитов обычно продолжительны и обеспечивают тоническое сокращение гладкой мышечной ткани сосудов и полых внутренних органов, в том числе гладкомышечных сфинктеров. В этих органах содержатся и многочисленные рецепторные окончания в виде кустиков, деревцев или диффузных полей.
Регенерация гладкой мышечной ткани осуществляется несколькими способами:
Организация ГМК как ткани: Миоциты окружены снаружи рыхлой волокнистой соединительной тканью — эндомизием и связаны друг с другом боковыми поверхностями. При этом, в области тесного контакта соседних миоцитов базальные пластинки прерываются. Миоциты соприкасаются непосредственно плазмолеммами и в этих местах имеются щелевидные контакты, через которые осуществляется ионная связь и передача биопотенциала с одного миоцита на другой, что приводит к одновременному и содружественному их сокращению. Цепь миоцитов, объединенных механической и метаболической связью, составляет функциональное мышечное волокно. В эндомизии проходят кровеносные капилляры, обеспечивающие трофику миоцитов, а в прослойках соединительной ткани между пучками и слоями миоцитов в перимизии проходят более крупные сосуды и нервы, а также сосудистые и нервные сплетения.
Примеры локализации ГМК и гладкомышечной ткани: ГМК мышцы радужки (расширяющие и суживающие зрачок) и семявыносящего протока, висцеральные ГМК в стенке полых органов пищеварительной, дыхательной, выделительной и половой систем, ГМК сосудов.
Вопрос 22. Гуморальная регуляция сокращения и расслабления ГМК.
Рецепторы плазмолеммы ГМК многочисленны. В мембрану ГМК встроены рецепторы ацетилхолина, гистамина, атриопептина, ангиотензина, адреналина, норадреналина, вазопрессина и множество других. Агонисты, связываясь со своими рецепторами в мембране ГМК, вызывают сокращение или расслабление ГМК. ГМК разных органов различно реагируют (сокращением либо расслаблением) на одни и те же лиганды. Это обстоятельство объясняется тем, что существуют разные подтипы конкретных рецепторов с характерным распределением в разных органах
Сокращение: в ГМК, как и в других мышечных тканях, работает актомиозиновый хемомеханический преобразователь, но АТФазная активность миозина в гладкомышечной ткани приблизительно на порядок величины ниже активности АТФазы миозина поперечнополосатой мышцы. Медленное образование и разрушение актин-миозиновых мостиков требуют меньшего количества АТФ. Отсюда, а также из факта лабильности миозиновых нитей (их постоянная сборка и разборка при сокращении и расслаблении соответственно) вытекает важное обстоятельство - в ГМК медленно развивается и длительно поддерживается сокращение. При поступлении сигнала к ГМК сокращение клетки запускают ионы кальция, поступающие из кальциевых депо. Рецептор Са2+ - кальмодулин.
Расслабление: лиганды (атриопептин, брадикинин, гистамин, VIP) связываются с их рецепторами и активируют G-белок (Gs), который в свою очередь активирует аденилатциклазу, катализирующую образование цАМФ. Последний активирует работу кальциевых насосов, откачивающих Са2+ из саркоплазмы в полость саркоплазматического ретикулума. При низкой концентрации Са2+ в саркоплазме фосфатаза лёгких цепей миозина осуществляет дефосфорилирование лёгкой цепи миозина, что приводит к инактивации молекулы миозина. Дефосфорилированный миозин теряет сродство к актину, что предотвращает образование поперечных мостиков. Расслабление ГМК заканчивается разборкой миозиновых нитей.
Тема 9: «Нервная ткань»
Вопрос 1. Источники развития: нейроэктодерма, нервная трубка, нервный гребень, нейрогенные плакоды.
Нейруляция — процесс закладки нервной системы и осевых структур. Она начинается с 16 суток развития (первые признаки формирования нервной пластинки) и в основном завершается к 22-23 суткам. Почти одновременно из мезодермы формируются сомиты и нефротом.
А. Стадии нейруляции.
1. Индукция нервной пластинки.
2. Приподнимание краёв нервной пластинки и образование нервного желобка.
3. Появление нервных валиков.
4. Формирование нервного гребня и начало выселения из него клеток.
5. Слияние нервных валиков — образование нервной трубки.
6. Смыкание эктодермы над нервной трубкой.
Первичная эмбриональная индукция. Нейральная, или первичная эмбриональная индукция — образование нервной пластинки из дорсальной эктодермы. Этот процесс определяет организатор — хордомезодерма. В ходе первичной эмбриональ ной индукции детерминируется судьба клеток, дающих начало нервной системе. Природа индуктора и механизм индукционного взаимодействия между хордомезодермой и дорсальной эктодермой неясны.
Нервная трубка. Вскоре после образования края нервной пластинки приподнимаются, и формируются нервные валики. Между валиками расположен нервный желобок. Позднее края нервных валиков смыкаются по срединной линии и образуется замкнутая нервная трубка.
Нервный гребень. После смыкания валиков и образования нервной трубки часть экто дермы, расположенная между нейральной и ненейральной (кожной) эктодермой, формирует новую структуру — нервный гребень.
Нейрогенные плакоды — утолщения эктодермы, расположенные латерально по обе стороны от формирующейся нервной трубки в краниальном отделе зародыша. Производные нейрогенных плакод: нейроны обонятельной выстилки, нейроны вестибулярного и слухового ганглиев, а также чувствительные нейроны коленчатого, каменистого, узловатого и тройничного ганглиев черепных нервов.
Вопрос 2. Нервный гребень. Миграция и дифференцировка клеток нервного гребня.
Нервный гребень. После смыкания валиков и образования нервной трубки часть экто дермы, расположенная между нейральной и ненейральной (кожной) эктодермой, формирует новую структуру — нервный гребень.
Основной процесс, определяющий расслабление кардиомиоцитов, — этоудаление ионов Кальция из саркоплазмы. При этом комплексы Са2+ с тропонином С распадаются, тропомиозин смещается по отношению к актиновым филаментам и закрывает их активные центры — сокращение прекращается. Существует три механизма удаления ионов Са2+ из саркоплазмы кардиомиоцитов:
1) Са-насосы плазматической мембраны и саркоплазматического ретикулума. Удаляют Са2+ во внеклеточную среду и цистерны саркоплазматического ретикулума. Составной их частью является Са-АТФ-аза, которая для осуществления активного транспорта ионов Са2+ использует энергию АТФ;
2) Na-Ca-обменный механизм. Удаляет ионы Са2+ во внеклеточную среду. Является разновидностью вторичного активного транспорта (антипорта). Использует энергию градиента концентраций ионов натрия по обе стороны плазматической мембраны, поэтому зависит от работы Na-K-насоса, создающего этот градиент;
3) Са-аккумулирующая функция митохондрий. Активируется только при значительном повышении содержания ионов Са2+ в саркоплазме, что чаще всего бывает в условиях патологии. Удаление Са2+ из саркоплазмы в матрикс митохондрий происходит за счет энергии, освобождающейся в процессе транспорта электронов по дыхательной цепи.
Вопрос 20. Гладкомышечная клетка: строение клетки, сократительный аппарат, механизмы сокращения и расслабления.
Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и сосудов является миоцит. Представляет собой чаще всего веретенообразную клетку (длиной 20—500 мкм, диаметром 5—8 мкм), покрытую снаружи базальной пластинкой, но встречаются и отростчатые миоциты. В центре располагается вытянутое ядро, по полюсам которого локализуются общие органеллы: зернистая эндоплазматическая сеть, пластинчатый комплекс, митохондрии, цитоцентр. В цитоплазме содержатся толстые (17 нм) миозиновые и тонкие (7 нм) актиновые миофиламенты, которые располагаются в основном параллельно друг другу вдоль оси миоцита и не образуют А и I диски, чем и объясняется отсутствие поперечной исчерченности миоцитов. В цитоплазме миоцитов и на внутренней поверхности плазмолеммы встречаются многочисленные плотные тельца, к которым прикрепляются актиновые, миозиновые, а так же промежуточные филаменты. Плазмолемма образует небольшие углубления — кавеолы, которые рассматриваются как аналоги Т-канальцев. Под плазмолеммой локализуются многочисленные везикулы, которые вместе с тонкими канальцами цитоплазмы являются элементами саркоплазматической сети.
Механизм сокращения в миоцитах в принципе сходен с сокращением саркомеров в миофибриллах в скелетных мышечных волокнах. Он осуществляется за счет взаимодействия и скольжения актиновых миофиламентов вдоль миозиновых. Для такого взаимодействия также необходимы энергия в виде АТФ, ионы кальция и наличие биопотенциала. Биопотенциалы поступают от эфферентных окончаний вегетативных нервных волокон непосредственно на миоциты или опосредованно от соседних клеток через щелевидные контакты и передаются через кавеолы на элементы саркоплазматической сети, обуславливая выход из них ионов кальция в саркоплазму. Под влиянием ионов кальция развиваются механизмы взаимодействия между актиновыми и миозиновыми филаментами, аналогичные тем, которые происходят в саркомерах скелетных мышечных волокон, в результате чего происходит скольжение названных миофиламентов и перемещение плотных телец в цитоплазме. В миоцитах, кроме актиновых и миозиновых филаментов, имеются еще промежуточные, которые одним концом прикрепляются к цитоплазматическим плотным тельцам, а другим — прикрепительным тельцам на плазмолемме и таким образом передают усилия взаимодействия актиновых и миозиновых филаментов на сарколемму миоцита, чем и достигается его укорочение.
Вопрос 21. Дифференцировка и типы ГМК. Иннервация ГМК. Регенерация ГМК. Организация ГМК как гладкомышечная ткань. Примеры локализации ГМК и гладкомышечной ткани.
Дифференцировка и типы ГМК:
-
Мезенхемального происхождения: подавляющая часть гладкой мышечной ткани организма (внутренних органов и сосудов) . -
Нейрального происхождения развиваются из нейроэктодермы, из краев стенки глазного бокала, являющегося выпячиванием промежуточного мозга. Из этого источника развиваются миоциты, которые образуют две мышцы радужной оболочки глаза: мышцу суживающую зрачок и мышцу расширяющую зрачок. По своей морфологии миоциты радужной оболочки не отличаются от мезенхимных миоцитов, однако, отличаются по иннервации. Каждый миоцит получает вегетативную эфферентную иннервацию (мышца расширяющая зрачок — симпатическую, мышца суживающая зрачок —парасимпатическую). Благодаря этому, названные мышцы сокращаются быстро и координировано, в зависимости от мощности светового пучка. -
Эпидермального происхождения развиваются из кожной эктодермы и представляют собой не типичные веретеновидные миоциты, а клетки звездчатой формы — миоэпителиальные клетки, располагающиеся в концевых отделах слюнных, молочных, слезных и потовых желез, снаружи от секреторных клеток. В своих отростках миоэпителиальные клетки содержат актиновые и миозиновые филаменты, благодаря взаимодействию которых отростки клеток сокращаются и способствуют выделению секрета из концевых отделов и мелких протоков названных желез в более крупные протоки. Эфферентную иннервацию получают также из вегетативного отдела нервной системы.
Иннервация ГМК: Эфферентная иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой. При этом, терминальные веточки аксонов эфферентных вегетативных нейронов, проходя по поверхности нескольких миоцитов, образуют на них небольшие варикозные утолщения, которые несколько прогибают плазмолемму и образуют мионевральные синапсы. При поступлении нервных импульсов в синаптическую щель выделяются медиаторы (ацетилхолин или норадреналин), и обуславливают деполяризацию мембран миоцитов и последующее их сокращение. Через щелевидные контакты биопотенциалы переходят из одного миоцита на другой, что сопровождается возбуждением и сокращением и тех гладкомышечных клеток, которые не содержат нервных окончаний. Возбуждение и сокращение миоцитов обычно продолжительны и обеспечивают тоническое сокращение гладкой мышечной ткани сосудов и полых внутренних органов, в том числе гладкомышечных сфинктеров. В этих органах содержатся и многочисленные рецепторные окончания в виде кустиков, деревцев или диффузных полей.
Регенерация гладкой мышечной ткани осуществляется несколькими способами:
-
посредством внутриклеточной регенерации гипертрофии при усилении функциональной нагрузки; -
посредством митотического деления миоцитов при их повреждении (репаративная регенерация); -
посредством дифференцировки из камбиальных элементов — из адвентициальных клеток и миофибробластов.
Организация ГМК как ткани: Миоциты окружены снаружи рыхлой волокнистой соединительной тканью — эндомизием и связаны друг с другом боковыми поверхностями. При этом, в области тесного контакта соседних миоцитов базальные пластинки прерываются. Миоциты соприкасаются непосредственно плазмолеммами и в этих местах имеются щелевидные контакты, через которые осуществляется ионная связь и передача биопотенциала с одного миоцита на другой, что приводит к одновременному и содружественному их сокращению. Цепь миоцитов, объединенных механической и метаболической связью, составляет функциональное мышечное волокно. В эндомизии проходят кровеносные капилляры, обеспечивающие трофику миоцитов, а в прослойках соединительной ткани между пучками и слоями миоцитов в перимизии проходят более крупные сосуды и нервы, а также сосудистые и нервные сплетения.
Примеры локализации ГМК и гладкомышечной ткани: ГМК мышцы радужки (расширяющие и суживающие зрачок) и семявыносящего протока, висцеральные ГМК в стенке полых органов пищеварительной, дыхательной, выделительной и половой систем, ГМК сосудов.
|
Вопрос 22. Гуморальная регуляция сокращения и расслабления ГМК.
Рецепторы плазмолеммы ГМК многочисленны. В мембрану ГМК встроены рецепторы ацетилхолина, гистамина, атриопептина, ангиотензина, адреналина, норадреналина, вазопрессина и множество других. Агонисты, связываясь со своими рецепторами в мембране ГМК, вызывают сокращение или расслабление ГМК. ГМК разных органов различно реагируют (сокращением либо расслаблением) на одни и те же лиганды. Это обстоятельство объясняется тем, что существуют разные подтипы конкретных рецепторов с характерным распределением в разных органах
Сокращение: в ГМК, как и в других мышечных тканях, работает актомиозиновый хемомеханический преобразователь, но АТФазная активность миозина в гладкомышечной ткани приблизительно на порядок величины ниже активности АТФазы миозина поперечнополосатой мышцы. Медленное образование и разрушение актин-миозиновых мостиков требуют меньшего количества АТФ. Отсюда, а также из факта лабильности миозиновых нитей (их постоянная сборка и разборка при сокращении и расслаблении соответственно) вытекает важное обстоятельство - в ГМК медленно развивается и длительно поддерживается сокращение. При поступлении сигнала к ГМК сокращение клетки запускают ионы кальция, поступающие из кальциевых депо. Рецептор Са2+ - кальмодулин.
Расслабление: лиганды (атриопептин, брадикинин, гистамин, VIP) связываются с их рецепторами и активируют G-белок (Gs), который в свою очередь активирует аденилатциклазу, катализирующую образование цАМФ. Последний активирует работу кальциевых насосов, откачивающих Са2+ из саркоплазмы в полость саркоплазматического ретикулума. При низкой концентрации Са2+ в саркоплазме фосфатаза лёгких цепей миозина осуществляет дефосфорилирование лёгкой цепи миозина, что приводит к инактивации молекулы миозина. Дефосфорилированный миозин теряет сродство к актину, что предотвращает образование поперечных мостиков. Расслабление ГМК заканчивается разборкой миозиновых нитей.
Тема 9: «Нервная ткань»
Вопрос 1. Источники развития: нейроэктодерма, нервная трубка, нервный гребень, нейрогенные плакоды.
Нейруляция — процесс закладки нервной системы и осевых структур. Она начинается с 16 суток развития (первые признаки формирования нервной пластинки) и в основном завершается к 22-23 суткам. Почти одновременно из мезодермы формируются сомиты и нефротом.
А. Стадии нейруляции.
1. Индукция нервной пластинки.
2. Приподнимание краёв нервной пластинки и образование нервного желобка.
3. Появление нервных валиков.
4. Формирование нервного гребня и начало выселения из него клеток.
5. Слияние нервных валиков — образование нервной трубки.
6. Смыкание эктодермы над нервной трубкой.
Первичная эмбриональная индукция. Нейральная, или первичная эмбриональная индукция — образование нервной пластинки из дорсальной эктодермы. Этот процесс определяет организатор — хордомезодерма. В ходе первичной эмбриональ ной индукции детерминируется судьба клеток, дающих начало нервной системе. Природа индуктора и механизм индукционного взаимодействия между хордомезодермой и дорсальной эктодермой неясны.
Нервная трубка. Вскоре после образования края нервной пластинки приподнимаются, и формируются нервные валики. Между валиками расположен нервный желобок. Позднее края нервных валиков смыкаются по срединной линии и образуется замкнутая нервная трубка.
Нервный гребень. После смыкания валиков и образования нервной трубки часть экто дермы, расположенная между нейральной и ненейральной (кожной) эктодермой, формирует новую структуру — нервный гребень.
Нейрогенные плакоды — утолщения эктодермы, расположенные латерально по обе стороны от формирующейся нервной трубки в краниальном отделе зародыша. Производные нейрогенных плакод: нейроны обонятельной выстилки, нейроны вестибулярного и слухового ганглиев, а также чувствительные нейроны коленчатого, каменистого, узловатого и тройничного ганглиев черепных нервов.
Вопрос 2. Нервный гребень. Миграция и дифференцировка клеток нервного гребня.
Нервный гребень. После смыкания валиков и образования нервной трубки часть экто дермы, расположенная между нейральной и ненейральной (кожной) эктодермой, формирует новую структуру — нервный гребень.