Файл: ОТВЕТЫ на 1 модуль.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 19.03.2024

Просмотров: 40

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1. Три положення квантової електроніки.

2. На які області поділяється оптичний діапазон, привести які довжини хвиль (частоти) відповідають цим областям? з якими діапазонами граничить оптичний діапазон? в чому

34.Властивості відкритого резонатора з плоскими дзеркалами.

36. Властивості сферичного та напів-сферичного резонатора

37. Кільцеві резонатори, пов‘язані резонатори, резонатори з бреговськіми дзеркалами, резонатори з розподіленим зворотнім зв‘язком.

38. Узагальнений сферичний резонатор, схема і параметри. Відкриті резонатори з погляду

39. Втрати в оптичному резонаторі, умова стійкості, діаграма стійкості

40. Стійки та не стійки відкриті резонатори, визначення, приклади, переваги та недоліки резонаторів двох відповідних типів.

41. Селекція мод у відкритих резонаторах. Пояснення зовнішньої та внутрішньої селекції мод, приклади реалізації.

42. Селекція мод у відкритих резонаторах. Пояснення селекції подовжніх та поперечних мод, приклади реалізації.

- Крiм того, iнверсiйну заселенiсть у газових середовищах можна одержати за допомогою хiмiчної реакцiї. У цьому разi звичайно використовуються екзотермiчнi реакцiї замiщення вигляду

20. Надайте визначення робочої речовини або активного середовища. Перелічите та коротко

поясніть методи створення інверсійної населеності в напівпровіднику.

Середовище може пiдсилювати електромагнiтне випромiнювання, якщо в ньому створена iнверсiйна заселенiсть (або iншими словами – вiд’ємна температура). Такий стан активної речовини досягається в термодинамiчних i нерiвноважних системах за допомогою накачування активного середовища енергiєю.

Робочi речовини (атомнi, iоннi, молекулярнi системи), що використовуються у квантових приладах, характеризуються великою рiзноманiтнiстю i можуть перебувати в рiзних агрегатних станах – газоподiбних, твердих i рiдких.

Умова отримання iнверсiйної заселеностi у напiвпровiдникових матерiалах залежить вiд типу переходу (наприклад, зона- зона, зона-домiшка, переходи мiж рiвнями домiшок та переходи мiж рiвнями розмiрного квантування, що належать однiй зонi, або внутрiшньозоннi переходи).

Для створення iнверсiйної заселеностi у напiвпровiдниках широко використовують такi методи: оптичне накачування, збудження пучком швидких електронiв, пряме електричне збудження, iнжекцiя носiїв заряду через p-n - перехiд i т.д.

- При оптичному накачуваннi iнтенсивний свiтловий потiк спрямований на поверхню напiвпровiдника. За умови hνn > ∆E (νn – частота сигналу накачування) електрони iз валентної зони переходять до зони провiдностi, що призводить до 84 порушення рiвноважного стану в робочiй речовинi.

- Якщо на поверхню напiвпровiдника направити пучок електронiв з енергiєю порядку 20 000еВ, то у тонкому поверхневому шарi виникає велика кiлькiсть пар електрондiрка. З краю зони провiдностi збираються електрони, а з краю валентної зони – дiрки. В результатi рекомбiнацiї виникає лазерне випромi- нювання. Можливiсть сканування i високоефективної модуляцiї лазерного випромiнювання – однi iз переваг такого методу збудження.

- При розмiщеннi напiвпровiдника у сильному електрично- му полi (порядку 105В/см) у ньому утворюються нерiвноважнi електрони i дiрки вiдповiдно у зонi провiдностi та валентнiй зонi. Це вiдбувається або за рахунок ударної iонiзацiї, або за рахунок вiдриву електронiв i дiрок електричним полем.


- Метод iнжекцiї носiїв заряду через p - n - перехiд. У цьому випадку використовується p - n - перехiд у вироджених напiвпровiдниках.

21. Надайте визначення робочої речовини або активного середовища. Перелічите та коротко

поясніть методи створення інверсійної населеності в кристалах та стеклах.

Середовище може пiдсилювати електромагнiтне випромiнювання, якщо в ньому створена iнверсiйна заселенiсть (або iншими словами – вiд’ємна температура). Такий стан активної речовини досягається в термодинамiчних i нерiвноважних системах за допомогою накачування активного середовища енергiєю.

Робочi речовини (атомнi, iоннi, молекулярнi системи), що використовуються у квантових приладах, характеризуються великою рiзноманiтнiстю i можуть перебувати в рiзних агрегатних станах – газоподiбних, твердих i рiдких.

Розглянемо метод накачування додатковим випромiнюванням (оптичне накачування). Цей метод є найбiльш унiверсальним i використовується для накачування твердотiльних лазерiв на парамагнiтних кристалах, склi, для рiдинних лазерiв, також може застосовуватись у напiвпровiдникових i газових лазерах. Сутнiсть методу полягає у тому, що активну речовину опромiнюють потужним електромагнiтним випромiнюванням, яке має назву випромiнювання накачування.

Це випромiнювання пiдбирають таким чином, щоб воно поглиналось активною речовиною, яка переводить активнi центри з основного стану до збудженого. Джерелом накачування в оптичному дiапазонi можуть бути рiзноманiтнi джерела свiтла, у тому числi й звичайнi лампи нагрiвання, спецiальнi потужнi ксеноновi лампи-спалаху, ртутнi лампи, напiвпровiдниковi дiоди, джерела сонячного випромiнювання та iншi.

22. Поясніть механізм створення інверсійної населеності та генерування фотонів в трьох-

рівневій схемі першого типу.

Залежно вiд того, мiж якими рiвнями досягається iнверсiйна заселенiсть, розрiзняють трирiвневi схеми першого i другого типiв. У схемах першого типу робочий перехiд закiнчується в основному станi, а у схемах другого типу – у збудженому. Накачування за можливiстю здiйснюється селективно на рiвень E3.

Якщо в трьохрiвневiй схемi першого типу дiє сигнал допомiжного випромiнювання iз частотою, рівною частотi переходу мiж рiвнями 1 i 3 (ν13), то змiна населеностi цих рiвнiв описується системою рiвнянь


де ωnm = Snm + Anm – в даному випадку є швидкістю розпадання вiдповiдних рiвнiв за рахунок безвипромiнювальних та спонтанних переходiв. Оскiльки сума всiх трьох рiвнiв при будь-якому розподiлi частинок за рiвнями залишається постiйною, то N = N1 + N2 + N3.

23. Поясніть механізм створення інверсійної населеності та генерування фотонів в трьох-

рівневій схемі другого типу.

Залежно вiд того, мiж якими рiвнями досягається iнверсiйна заселенiсть, розрiзняють трирiвневi схеми першого i другого типiв. У схемах першого типу робочий перехiд закiнчується в основному станi, а у схемах другого типу – у збудженому. Накачування за можливiстю здiйснюється селективно на рiвень E3.

Якщо в трьохрiвневiй схемi першого типу дiє сигнал допомiжного випромiнювання iз частотою, рівною частотi переходу мiж рiвнями 1 i 3 (ν13), то змiна населеностi цих рiвнiв описується системою рiвнянь

де ωnm = Snm + Anm – в даному випадку є швидкістю розпадання вiдповiдних рiвнiв за рахунок безвипромiнювальних та спонтанних переходiв. Оскiльки сума всiх трьох рiвнiв при будь-якому розподiлi частинок за рiвнями залишається постiйною, то N = N1 + N2 + N3.

24. Поясніть механізм створення інверсійної населеності та генерування фотонів в чотирьох-

рівневій схемі, поясніть її переваги порівняно з трьох-рівневою схемою.

25. Метод кінетичних рівнянь (швидкісних рівнянь). Запишіть систему кінетичних рівнянь для

будь-якої трьох-рівневої схеми.

Квантовi переходи мiж енергетичними станами в першо- му наближеннi теорiї збурень можуть описуватися кiнетичними рiвняннями [17]. Також вони отримали назву швидкiсних рiв- нянь, або рiвнянь балансу. За допомогою методу кiнетичних рiвнянь можна вирiшити цiлий ряд завдань: накачування речо- вини в стацiонарному режимi; визначення типiв коливань ла- зерного випромiнювання уздовж поздовжньої осi резонатора; розрахунок ширини лiнiї лазерного випромiнювання; отриман- ня умов для генерацiї лазерiв та динамiку генерацiї гiгантського iмпульсу та iншi. Потрiбно вiдмiтити, що кiнетичнi рiвняння описують змiну в часi середнiх значень кiлькостi квантiв та заселеностей станiв квантових рiвнiв. При аналiзi умов отримання iнверсiйної засе- леностi розглядаються тiльки початковi та кiнцевi стани основ- них квантових переходiв. Кожна зi схем, що розглядається, є спрощенням, яке дозволяє враховувати лише основнi явища.


У трирiвневiй системi можна досягти iнверсiй- ну заселенiсть мiж рiвнями 2 та 1 за умови, що ω32 > ω21 та гу- стина випромiнювання накачування перевищить порогове зна- чення, при якому N2 = N1.

26. Метод кінетичних рівнянь (швидкісних рівнянь). Запишіть систему кінетичних рівнянь для

чотирьох-рівневої схеми.

Запишіть систему кінетичних рівнянь для чотирьох рівневої схеми.

У чотирирiвневiй схемi канали генерацiї та накачування повнiстю роздiленi, що дозволяє отримати iнверсiйну заселенiсть при мiнiмальних рiвнях накачування.

Iнверсiйна заселенiсть мiж E3 i E2 досягається, коли ω21ω43 > [ω4231 + ω32) + ω32ω43] g3 g2

За рахунок iнтенсивних вимушених переходiв з випромiнюванням у каналi генерацiї 3 ↔ 2 значення N3 буде зменшуватися, а N2 – зростати, приводячи до насичення коефiцiєнта пiдсилення. Необхiдно зазначити деякi моменти, що належать як до три- рiвневих схем, так i до чотирирiвневих. 1. Для виключення термiчного виродження необхiдно, щоб енергетичнi вiдстанi мiж рiвнями E4 − E3 i E2 − E1 були бiльшi за kT. Однак вони не повиннi бути занадто великими, оскiльки в протилежному випадку бiльша частина енергiї накачування ви- трачатиметься даремно. Це призведе до зменшення ККД у межах η < E3−E2 E4−E1 i розiгрiвання активної речовини, або до випадку коли надлишкова енергiя при релаксацiйних процесах видiлятиметься у виглядi тепла. 2. При оптичному накачуваннi, коли джерело накачування випромiнює в широкiй областi спектра, необхiдно, щоб верхнiй рiвень E4 був достатньо широким. Це необхiдно для бiльш повного використання енергiї накачування. 3. Для виключення самопоглинання, що призводить до переходiв E1 → E2 i E3 → E2, бажано, щоб релаксацiйнi процеси вiдбувалися за рахунок неоптичних безвипромiнювальних переходiв. 4. Час життя на верхньому лазерному рiвнi E3 повинен визначатися випромiнювальними процесами, а ймовiрнiсть безвипромiнювальних переходiв iз цього рiвня має бути мiнiмальною.

27. Монохроматичність лазерного випромінювання.

Монохроматичнiсть характеризує ступiнь концентрацiї випромiнювання за спектром, або здатнiсть лазера випромiнювати у вузькому дiапазонi частот. Реальне випромiнювання, як правило, є сумою деякої кiлькостi монохроматичних хвиль. Чим вужчий iнтервал, до якого належать частоти спостережуваного випромiнювання, тим воно бiльш монохроматичне.


Для кiлькiсної характеристики ступеня монохроматичностi користуються параметрами, загальною рисою яких є залежнiсть вiд добротностi спектральної моди, що збуджується в резонаторi.

Теоретично межа ширини спектральної лінії визначається :

  1. шумами за рахунок теплового випромінювання в резонаторі (менш суттєві);

  2. шумами за рахунок спонтанного випромінювання активної речовини.

Спектр вихідного випромінювання має лоренцевий контур, а його напівширина визначається формулою Шавалова і Таунса:

Затягування частоти та спектр вихідного випромінювання в одномодовому лазері

Високий ступінь монохроматичності лазерного випромінювання визначає високу спектральну щільність енергії -- високий ступінь концентрації світлової енергії в дуже малому спектральному інтервалі.

Висока монохроматичність полегшує фокусування лазерного випромінювання, оскільки при цьому хроматична аберація лінзи стає неістотною.

Задачі, які вирішуються засобами монохроматичного випромінювання:

дослідження властивостей атмосфери; визначення монохроматичних коефіцієнтів поглинання та розсіювання; спектральний аналіз по спектрам поглинання, аналіз структури та визначення концентрації поглинання речовини; аналіз спектрів поглинання для вивчення будови поглинаючих центрів та природу процесу поглинання; вивчення процесів фотолюмінесценції, фотоефекту, вивчення спектральної залежності виходу цих процесів; вивчення фотохімічних явищ; вивчення щільності плазми.

28. Спрямованість лазерного випромінювання. 29. Когерентність лазерного випромінювання.

Спрямованiсть визначає розходження свiтлового пучка в просторi, що характеризується плоским або тiлесним кутом, у якому поширюється велика частина 109 випромiнювання. Розходження пучка є мiрою його вiдхилення вiд паралельностi. Лазерне випромiнювання за своєю природою має високий ступiнь спрямованостi. Визначення кута дифракційного розходження:

Теорія дифракції вказує на існування трьох просторових областей зі своїми відмінностями, які потрібно враховувати при вимірюванні параметрів випромінювання: