Файл: В пособии рассмотрены основные требования к эксплуатационным материалам, производимым за рубежом и широко поставляемым в Россию.doc

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 20.03.2024

Просмотров: 139

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

2.2. Особенности эксплуатационных свойств моторных масел

Таблица 2.4

Классы вязкости моторных масел

Глава 3

Трансмиссионные масла

3.1. Способы передачи крутящего момента

Продолжение табл. 3.3

Окончание табл. 3.3

Глава 5

Специальные жидкости

5.1. Охлаждающие жидкости

Таблица 5.10

Физико-химические характеристики гидравлических жидкостей

6.1. Основные принципы и понятия нормирования расхода ГСМ

Для автомобилей и их модификаций, не вошедших в «Нормы…» [20] (приведённый перечень неполный), установлены временные нормы расхода масел, специальных жидкостей и смазок.

6.2. Потери топлива

6.3. Борьба с потерями нефтепродуктов

6.4. Нормы естественной убыли нефтепродуктов и этилового спирта

6.5. Экономия ГСМ

6.6.1. Влияние ГСМ на природу и человека

6.6.2. Пожароопасность и токсичность топлив и масел

6.6.3. Меры безопасности при обращении с топливами и маслами в процессе обслуживания техники

жидкость имеет температуру окружающего воздуха, зимой – гораздо ниже нуля. Детали системы охлаждения выполнены из чёрных и цветных металлов и сплавов. Прокладки и трубопроводы (шланги) – из неметаллических материалов (технического картона, паронита, резины и др.).

Требования к охлаждающим жидкостям:

– высокие теплоёмкость и теплоотдача;

– невысокая вязкость;

– низкая температура замерзания и высокая температура кипения;

– отсутствие склонности к образованию отложений (накипи);

– коррозионная нейтральность к конструкционным материалам;

– невысокий коэффициент теплового расширения;

– нетоксичность;

– пожаробезопасность;

– дешевизна, недефицитность и широкая сырьевая база.

В настоящее время жидкостей, полностью отвечающих всем перечисленным требованиям, не существует. В качестве охлаждающих используют следующие жидкости и смеси:

– вода;

– смесь воды и этиленгликоля;

– водоглицериновые смеси;

– водоспиртовые смеси.

Теплофизические характеристики некоторых жидкостей приведены в табл. 5.1.
Таблица 5.1
Теплофизические характеристики некоторых жидкостей





Теплофизические характеристики

Продукт

Удельная теплоём-

кость,

кДж/(кгК)

Скрытая теплота ис­парения, ккал

Коэффициент теплопровод-ности, ккал/мград

Коэффициент теплоотдачи при вынужден­ной конвекции, ккал/м2град

Вода

4,21,0

539

51510– 3

500–10000

Этиленгликоль

4,20,575

220

214610–3



Этиловый спирт

4,20,669

216

15110–3



Жидкость марки 40 (этиленгликоль 53 %, вода 46,6 %)


4,20,849





36010–3





5.1.2. Эксплутационные свойства охлаждающих жидкостей

Охлаждающая способность наиболее высока у воды. Этиленгликоль, глицерин и спирт, а также их смеси с водой имеют более низкую охлаждающую способность. Температурный режим двигателя, особенно при высоких температурах воздуха и больших нагрузках, наиболее устойчиво поддерживается системой охлаждения, заправленной водой.

Низко- и высокотемпературные свойства. Температурный диапазон применения охлаждающих жидкостей определяется температурами замерзания и кипения. Для понижения температуры замерзания используют смесь воды и различных жидкостей. В результате удаётся понизить температуру замерзания до минус 65 С, что вполне достаточно для эксплуатации автомашин в любом климатическом поясе России. Для повышения температуры кипения систему охлаждения герметизируют, в ней при нагревании жидкости повышается давление и температура кипения возрастает. Это даёт дополнительное время водителю для того, чтобы принять меры и не допустить закипания охлаждающей жидкости в двигателе.

На низший температурный предел применения жидкости большое влияние оказывает вязкость. При чрезмерном возрастании вязкости значительно увеличивается сопротивление циркуляции жидкости по системе, особенно через трубки радиатора.

Спирты, гликоли и глицерин в смеси с водой имеют низкие температуры замерзания. Но при повышенных температурах спирты легко испаряются из смеси, что приводит к повышению температуры замерзания и увеличивает пожароопасность.

Коррозионность – важное эксплуатационное свойство охлаждающих жидкостей, в значительное мере влияющее на долговечность системы охлаждения. Коррозионное воздействие жидкостей на конструкционные материалы прежде всего определяется содержанием в охлаждающих жидкостях кислорода и хлора. Поэтому вода, используемая как охлаждающая жидкость или как компонент смеси должна содержать хлора не более 0,0007%. Водопроводная вода в целях обеззараживания хлорируется, содержание хлора в ней около 0,01% поэтому она коррозионно агрессивна.

Водные растворы этиленгликоля и спиртов обладают повышенной коррозионностью по отношению к металлам. Для устранения этого недостатка в смеси вводят присадки:

1) двузамещённый фосфорно-кислый натрий Na2HPO4 в количестве 2,5–3,5 г/л предохраняет от коррозии чугунные, стальные и медные детали;

2) декстрин картофельный (изомер крахмала С

6Н10О5) в количестве 1–1,1 г/л защищает припои, алюминий и медь;

3) присадки на основе бензойно-кислого натрия, нитрата натрия и буры защищают от коррозии все сплавы металлов в системе охлаждения.

Этиленгликолевые жидкости вызывают коррозию цинковых покрытий, поэтому хранение их в оцинкованных бочках не допускается.

При необходимости дополнительную защиту цинка обеспечивают введением в антифриз 7,5–8% молибденовокислого натрия (Na2MoO4). В этом случае в маркировке вводится строчная буква «м» – антифриз марки 40 м; 65 м.

Вспениваемость охлаждающих жидкостей ухудшает отвод тепла, так как воздух проводит тепло значительно меньше, чем вода. В чистом виде гликолевые жидкости не склонны к пенообразованию, но при попадании в них нефтепродуктов образуется обильная и устойчивая пена.

Высокую вспениваемость водоглицериновых смесей снижают добавлением спирта.

Токсичностью в наибольшей степени обладает этиленгликоль. Для человека смертельной дозой считается попадание внутрь 50–100 мг чистого этиленгликоля. Этиловый спирт менее ядовит.

Пожароопасность смеси этиленгликоля и воды невысока. При содержании воды более 20% возгорания смеси не происходит. Температура самовоспламенения этиленгликоля на воздухе выше 400 С. Смеси этилового спирта и воды горят при содержании в них спирта более 30–40% в зависимости от температуры.
5.1.3. Вода как охлаждающая жидкость
Наиболее полно отвечает предъявляемым к тормозным жидкостям требованиям простая вода. Сравнительно высокие теплоёмкость, теплопроводность и коэффициент теплоотдачи, а также незначительная вязкость (1,02 мм2/с при 20 С), нетоксичность и неограниченное количество делают воду ценным теплопередатчиком. Однако у воды есть и весьма существенные недостатки:

– высокая температура замерзания (0 С);

– низкая температура кипения (100 С);

– значительный коэффициент объёмного расширения при замерзании

(9%);

– склонность к образованию отложений (накипи);

– коррозионность к деталям системы охлаждения.

Несмотря на перечисленные недостатки, наряду с высокой стоимостью смесей воды с другими веществами, она широко применяется в системах охлаждения грузовых автомобилей. Эти системы имеют большую вместимость, поэтому затраты на заполнение и доливы специальными жидкостями велики.


Следует иметь ввиду, что попадание минеральных масел в воду взывает сильное пенообразование, что значительно ухудшает теплопередачу. Аналогичное действие оказывает присутствие даже небольшого количества масел в накипи.

При использовании воды в качестве охлаждающей жидкости необходимо постоянно помнить о её склонности к образованию осадков на стенках системы охлаждения. Накипь ухудшает теплоотдачу от нагретых деталей. На образование накипи основное влияние оказывает жёсткость воды.

Жёсткость воды определяют по содержанию в ней солей кальция и магния. Единица жёсткости – содержание 1 миллиграмм-эквивалента (мг-экв) ионов кальция и магния в 1 литре воды. Одному мг-экв жёсткости соответствует содержание 20,04 мг/л Са++ или 12,16 мг/л Мg++. Деление воды группы жёсткости показано в табл. 5.2.

Таблица 5.2
Классификация воды и режим технического обслуживания

системы охлаждения двигателей


Класс воды

Происхожде-ние воды

Группа жёсткости

Общая жёст-кость, мг-экв/л

Влияние на накипеобразова-ние

Атмосферная

Дождевая, снеговая

Очень мягкая

До 1,5

Накипи не образует

Окончание табл. 5.2


Класс воды

Происхожде-ние воды

Группа жёсткости

Общая жёст-кость, мг-экв/л

Влияние на накипеобразова-ние

Поверхност-ная

Речная, озёрная, северные водоёмы

Центральные и южные районы

Очень мягкая
Мягкая
Мягкая
Средне-жёсткая

До 1,5
1,5–4,0
1,5–4,0
4,0–8,0

Накипи почти не образует
Образует накипь. Необходимо не реже 2 раз в год удалять накипь.

Грунтовая

Родниковая, колодезная, артезианская

Жёсткая и очень жёсткая

8,0–12,0

и более

Быстро откладывается значительная накипь. Не рекомендуется применять воду без предварительного умягчения


Общая жёсткость воды является суммой карбонатной (временной) и некарбонатной, главным образом сульфатной
, жёсткостей. Жёсткость воды легко определить (ориентировочно) при намыливании рук: в мягкой воде пена устойчивая, а в жёсткой воде пена быстро гаснет и на руках остаётся сальный осадок.

Для устранения вредного влияния жёсткости – образования накипи – в систему охлаждения вводят антинакипины или умягчают воду перед заливом (табл. 5.3).

Таблица 5.3
Способы предупреждения образования накипи

Операция

Реактивы и их действие

Порядок применения

Введение антинакипинов

Хромпик К2Сr2O7 или нитрат аммония NH4NO3 переводят соли накипи в растворимое состояние

Готовят концентрат: 100 г реактива на 1 л воды. На 1 л среднежёсткой воды берут 30–50 мл концентрата; для жёсткой 100–130 мл. При помутнении воды в системе охлаждения воду меняют.

Умягчение воды

Гексамет (NaPO3)6 удерживает соли накипи во взвешенном состоянии

Добавляют в среднежёсткую воду 0,2, а в жёсткую – 0,3 г/л., периодически удаляют отстой через краники

Окончание таблицы 5.3


Операция

Реактивы и их действие

Порядок применения

Перегонка

Все растворимые соли остаются в перегонном кубе

Получают воду без солей жесткости

(дистиллированную)

Кипячение

Соли карбонатной и частично сульфатной жесткости выпадают в осадок

Воду кипятят 20–30 мин, отстаивают и фильтруют от осадка

Обработка химическими реагентами

Кальцинированная сода Na2CO3 – 53 мг/л на одну единицу жесткости

Тёплую воду перемешивают с реактивом 20–30 мин, отстаивают и фильтруют от осадка


Применение антинакипинов эффективно снижает скорость образования накипи в системе охлаждения (рис. 5.2).

Рис. 5.2. Динамика нарастания количества накипи в системе охлаждения, заправленной водой с антинакипином (2) и без него (1)