Файл: Атомы и химические элементы. Периодический закон и периодическая система элементов Д. И. Менделеева. Изотопы.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.03.2024

Просмотров: 128

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

37.Комплексные соединения. Координационная теория Вернера. Химическая связь в комплексных соединениях. Диссоциация комплексных соединений в растворах. Устойчивость комплексов. Парфириновые комплексы.
координационная теория строения комплексных соединений, сущность которой состоит в следующем:

  1. В молекулах большей части изученных комплексных соединений один из положительных ионов металла занимает центральное положение и называется центральным ионом или комплексообразователем.

  2. С комплексообразователем координированы, т.е. определенным образом связаны, так называемые лиганды, представляющие собой отрицательные ионы или нейтральные молекулы. Являющиеся донорами электронов. В силу этого лиганды находятся в непосредственной связи с комплексообразователем.

  3. Комплексообразователь вместе с лигандами составляет внутреннюю координационную сферу комплексного соединения, которая и заключается в квадратные скобки.

  4. Кроме внутренней сферы, в большей части комплексных соединений имеется также внешняя координационная сфера, состоящая в зависимости от заряда комплексного иона. Из отрицательных или положительных ионов.

  5. ионы внешней сферы связаны с внутренней сферой комплекса ионной связью. Которая при растворении вещества в воде разрывается, и ионы внешней сферы переходят в раствор в виде гидратированных ионов.

  6. Связь же комплексообразователя с лигандами неионогенная, и потому при растворении вещества в воде внутренняя координационная сфера не подвергается или почти не подвергается диссоциации.

Такова сущность координационной теории строения комплексных соединений. Поясним ее на конкретном примере гексацианоферрата калия K4[Fе(CN)6]. Комплексообразователем в этом соединении является ион Fе2+, а лигандами – ионы CN-. Во внешней координационной сфере находятся ионы К+. Ион Fе+2двухвалентен, следовательно, он может присоединить к себе за счет главной валентности только два иона CN- , а остальные ионы CN-

Присоединены к Fе+2 за счет побочной валентности, которую по предложению Вернера обозначают пунктирными линиями или же стрелками, направленными от лигандов к комплексообразователю.
K -[ CN NС ] -К

\ ∕

CN←Fе+2 →CN

∕ \

K
- [ CN NС ] -К
Внутренняя сфера заключается в квадратные скобки. Тогда во внешней сфере остаются ионы К+. При растворении в воде ионы калия переходят в раствор в виде гидратированных ионов:

К+ + m Н2О = [К(ОН2)m]+

А внутренняя сфера комплекса переходит в раствор в виде комплексного иона [Fе(CN)6]4-

Химическая связь в комплексных соединениях.

Химическую связь в комплексных соединениях можно интерпретировать как согласно методу ВС так и с позиции метода МО. Согласно методу ВС происходит возбуждение и гибридизация орбиталей центрального атома или (иона) при взаимодействии его с лигандами. Конфигурация валентной оболочки Си2+ в основном состоянии: 3d9 4s00

Си+2 ↑↓ ↑↓ ↑↓ ↑↓ .. .

3d9 4s00

(Си+2 ↑↓ ↑↓ ↑↓ ↑↓ .. .

3d9 4s0ху z

Т.е. в возбужденном состоянии образуется четыре sр3 – гибридные орбитали при взаимодействии с лигандами NН3 ориентация орбиталей имеет следующий вид.


— Си+2



В молекуле NН3 азот также имеет sр3 –гибридизацию 3d9 2s2 3 2s2ху z

..

Н—N —Н



Н на четвертой sр3 гибридной орбитали имеется неподеленная пара электронов.

Четыре неподеленные пары электронов обобщаются с согласно методу ВС образуются четыре равноценные двух электронные σ- связи N – Си+2 атомы N – донорные атомы

Центральный ион Си+2 использующий эти электроны – акцептор.

Связь донорно-акцепторная. Суммарная реакция образующегося комплекса Н



Си+2 ↑↓ ↑↓ ↑↓ ↑↓ .. . + 4 Н—N —↑↓→



Н

→[Сu(NН3)4 ]+2 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

3d9 NН3 333

Ориентация связей металл-лиганд определяет пространственную конфигурацию комплексных молекул.

Комплексы подобного строения называются квадратными.

Парфириновые комплексы.

Наиболее распространены в живой природе тетрадетантные комплексы –порфирины.

R1 дуги- углеродные цепи соединя-

N N

R4 R2 ющие донорные атомы азота.

N N R1 R2 R3 R4

– различные

. Углеводородные радикалы

R3

Порфирины образуют довольно прочные координационные соединения. Центральный атом может выступать Мg+2- активный центр хлорофилла – зеленый пигмент растений или Fe+2 – активный центр гемоглобина. Си+2- активный центр гемоцианина.

R1

N N активный центр хлорофилла

R4 Мg+2 R2

N N

.

R3

R1

N N активный центр гемоглобина

R4 Fe+2 R2

N N

.

R3

Т.о. порфиновые комплексы входят в состав важнейших биоорганических соединений и дефицит их приводит к серьезным нарушениям в организме.

Гемоглобин состоит из комплекса – гемо связанного с белком – глобином. В гемме центральный атом является ион Fe+2 вокруг которого координируется 4N. Гемоглобин обратимо присоединяет кислород и доставляет его из легких по кровеносной системе по всем тканям.

Название комплексного аниона начинают с указания внутренней сферы:

1) начинают анион прибавляя «о» к их латинскому названию (хлоро, сульфито, нитрито)

2) называют нейтральные лиганды: NН3 – амин Н2О – аква (моно-. Ди-, тетера-)

3) называют комплексообразователь к его латинскому названию + окончание «ат» и в скобках степень окисления комплексообразователя.

4) Если ц.а. входит в состав катиона используют его русское название.

Например: К3[Fe(NН3)(СN)4 ]- тетрацианодиаминферрат (Ш) калия

(NН4)2 [Pt(ОН)2С14]- тетрахлородигидроксоплатинат (1v) аммония.
Внешняя сфера связана с внутренней сферой силами электростатического притяжения и легко диссоциируют в водном растворе.

Лиганды связаны с ц.а. прочнее и образуемый распад внутренней сферы носит название вторичной диссоциации.

[Аg(NН3)2 ]С1 →[Аg(NН3)2 ]+ + С1- 1 стадия

[Аg(NН3)2 ]+ = Аg+ + 2NН3 П стадия

Или в общем виде

М + nℓ= Мℓn согласно закону действия масс равновесная константа

К = [Мℓn]/[М][ℓ]n

Константа устойчивости комплекса.

Исходя из уравнения видно, чем больше концентрация комплекса

[Мℓn], тем выше равновесная константа, т.е. тем выше константа устойчивости и устойчивее комплекс.

Величина обратная Ку = 1/Ку называется константой нестойкости.

1/Ку= [М][ℓ]n/ [Мℓn] константа нестойкости комплекса.


ΔG=-RTℓnKу - энергетическая характеристика реакции образования комплекса.
38.Электролитическая диссоциация. Элементы теории растворов электролитов. Сильные и слабые электролиты. Классификация электролитов по степени диссоциации.

39.Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель. Произведение растворимости.

40.Гидролиз. Гидролиз солей. Реакция среды. Степень и константа гидролиз

рН раствора солей.
Основные положения теории электролитической диссоциации.
Современное содержание этой теории можно свести к следующим положениям:

1.Электролиты при растрорении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные. Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома- это простые ионы (К+ , А13+ ит.д.)- или из нескольких атомов- это сложные ионы (NО3-,РО43- и т.д.)

2.Под действием электрического тока ионы приобретают направленное движение; положительно заряженные ионы движутся к катоду, отрицательно заряженные – к аноду. Поэтому первые называются катионами , вторые -анионами .

3. Диссоциация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация)

4. ионы (катионы, анионы) образуются в растворах электролитов всегда вследствие электролитической диссоциации полярных молекул и ионных кристаллов.

Процесс распада электролитов на ионы в водном растворе или расплаве называется электролитической диссоциацией или ионизацией.

Электролиты обладают различной способностью к диссоциации. Для того чтобы количественно охарактеризовать диссоциацию электролита, введено понятие степени диссоциации. Отношение числа молекул распавшихся на ионы n, к общему числу растворенных молекул электролита N называется степенью диссоциации α .

α = n/N

Она меняется от 0 до 1, или от 0 до 100%.

Вещества, полностью диссоциированные в растворе, относятся к сильным электролитам, слабые электролиты диссоциируют частично.

В зависимости от степени электролитической диссоциации кислот, оснований и солей различают сильные, средние и слабые электролиты.


К сильным электролитам относятся:

1) большинство растворимых солей;

2) многие неорганические кислоты Н2 SO4, НNO3 НCI, НCIО4, НВr,НI,НMnО4, НCIО3 и др.

3) гидроксиды щелочных металлов NаОН, КОН а также некоторых щелочноземельных металлов, такие как Ва(ОН)2 и Са(ОН)2.

У слабым электролитам относятся:

1) некоторые слабые неорганические кислоты:Н2СО3, Н2S, НNО2, Н2 SiО3, НCIО, НСN и почти все органические кислоты;

2) многие основания металлов ( кроме гидроксидов щелочных и щелочноземельных металлов), а также гидрат аммиака NН3 Н2О;

3) Некоторые соли: НgCI2, Нg(CN)2, Cd(CN)2 и др.

К электролитам средней силы относятся:Н3РО423,НF.

Степень диссоциации электролитов зависит от многих факторов: от природы растворителя, концентрации раствора, природы электролита, температуры.

Концентрация раствора. Степень диссоциации электролита увеличивается при разбавлении раствора, так как уменьшается возможность столкновения между ионами и в связи с этим преобладает процесс распада молекул на ионы.

В концентрированном растворе наблюдается частое столкновение ионов, это приводит к образованию молекул, следовательно, при увеличении концентрации раствора степень диссоциации уменьшается.

Природа электролита. Различные электролиты имеют разную степень диссоциации в одинаковых условиях.

Будучи растворены в воде, серная кислота во много раз лучше диссоциирует, чем уксусная. По степени диссоциации электролиты делятся на сильные, слабые и средней силы.

Температура. У сильных электролитов с повышением температуры степень диссоциации уменьшается, так как увеличивается число столкновений между ионами, приводящее к образованию молекул.

Вода, которая является слабым электролитом, находится в особом положении, так как диссоциация воды проходит с поглощением теплоты. Поэтому с повышением температуры, согласно принципу Ле-Шателье, степень диссоциации воды заметно возрастает.

Слабые электролиты в водных растворах диссоциируют только частично