Файл: Введение в курс технические средства автоматизации и управления Лекция 1.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.04.2024

Просмотров: 37

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

67
Из мембранных приборов широко используют бесшкальные дифманометры ДМ, снабженные дифференциально- трансформаторным преобразователем перемещения в унифицированный сигнал напряжения переменного тока.
Упругим чувствительным элементом такого дифманометра является мембранный блок, состоящий из двух сообщающихся мембранных коробок 1 и 2, заполненных жидкостью. Перепад давлений в камерах дифманометра вызывает деформацию мембранных коробок. При этом сжатие нижней мембранной коробки больше и жидкость вытесняется из нее в верхнюю мембранную коробку, вызывая тем самым ее расширение. Перемещение верхней мембраны передается жестко связанному с ней плунжеру дифференциально- трансформаторного преобразователя 3.
Дифманометр снабжен вентилями «+», «-» и «0». Через вентиль «+» к дифманометру подводится большее давление, а через вентиль
«-»- меньшее. При работе дифманометра оба эти вентиля открыты, а вентиль «0» закрыт. Если вентили «+» и «-» закрыть, а уравнительный вентиль
«0» открыть, то давления в камерах дифманометра станут одинаковыми. При этом стрелка измерительного прибора КСД должна установиться на делении, соответствующем нулевому перепаду давлений.
Промышленность выпускает также мембранные дифманометры с промежуточными преобразователями, имеющими унифицированные токовые или пневматические сигналы.
Для преобразования деформации мембраны в унифицированный токовый сигнал применяют также тензорезисторные промежуточные преобразователи, в которых сопротивление резистора изменяется при его растяжении или сжатии. В таких приборах тензорезистор укреплен на жесткой измерительной мембране.
Деформация мембраны, пропорциональная приложенному давлению, приводит к деформации тензорезистора и изменению его сопротивления. Это сопротивление преобразуется измерительной схемой, включающей неуравновешенный мост, в выходной сигнал постоянного тока. Так как деформация жесткой мембраны мала, то применяют полупроводниковые кремниевые тензорезисторы, обладающие высокой чувствительностью.
В дифманометрах чувствительным элементом служит блок из двух неупругих мембран, соединенных между собой штоком. Смещение этого штока под действием перепада давлений приводит к изгибу рычага и деформации измерительной мембраны. Мембраны выполнены из коррозионно-стойкого материала, что позволяет использовать дифманометр для измерений в сильноагрессивных средах.


68
Для измерения давления агрессивных сред применяют датчики, снабженные защитной мембраной, изготовленной, как и в дифманометрах, из коррозионно- стойкого материала. Измеряемое давление передается к измерительной мембране через силиконовое масло, которым заполнена внутренняя полость датчика.
Промышленные тензорезисторные преобразователи предназначены для преобразования давления, разрежения и разности давлений в пропорциональное значение выходного сигнала — постоянного тока.
Особенности эксплуатации приборов для измерения давления
При эксплуатации приборов, измеряющих давление, часто требуется защита их от агрессивного и теплового воздействия среды.
Если среда химически активна по отношению к материалу прибора, то его защиту производят с помощью разделительных сосудов или мембранных разделителей.
Разделительный сосуд заполняется жидкостью, инертной по отношению к материалу прибора, соединительных трубок и самого сосуда. Кроме того, разделительная жидкость не должна химически взаимодействовать с измеряемой средой или смешиваться с ней. В качестве разделительных жидкостей применяют водные растворы глицерина, этиленгликоль, технические масла и др.
В мембранном разделителе измеряемая среда отделяется от прибора мембраной с малой жесткостью из нержавеющей стали или фторопласта. Для передачи давления от мембраны к прибору полость между ними заполняют жидкостью.
Для предохранения прибора от действия высокой температуры среды применяют сифонные трубки.
Деформационные приборы требуют периодической поверки.
В эксплуатационных условиях у них проверяют нулевую и рабочую точки шкалы.
Для этого применяют трехходовые краны. При поверке нулевой точки прибор соединяют с атмосферой. Стрелка прибора должна вернуться к нулевой отметке.
Поверку прибора в рабочей точке шкалы осуществляют по контрольному манометру, укрепляемому на боковом фланце. При пользовании краном необходимо строго соблюдать плавность включения и выключения прибора.
С помощью трехходового крана можно проводить также продувку соединительной линии.
Манометр
Манометр (от греческого слова manos — редкий, неплотный, разрежённый) — прибор, измеряющий давление жидкости или газа.
Принцип действия манометра основан на уравновешивании измеряемого давления силой упругой деформации трубчатой пружины или более

69 чувствительной двухпластинчатой мембраны, один конец которой запаян в держатель, а другой через тягу связан с трибко-секторным механизмом, преобразующим линейное перемещение упругого чувствительного элемента в круговое движение показывающей стрелки.
В группу приборов измеряющих избыточное давление входят:
Манометры — приборы с измерением от 0,06 до 1000 МПа (Измеряют избыточное давление — положительную разность между абсолютным и барометрическим давлением)
Вакуумметры — приборы измеряющие разряжения (давления ниже атмосферного) (до минус 100 кПа).
Мановакуумметры — манометры измеряющие как избыточное (от 60 до
240000 кПа), так и вакуумметрическое (до минус 100 кПа) давление.
Напоромеры -манометры малых избыточных давлений до 40 КПа
Тягомеры -вакуумметры с пределом до минус 40 КПа
Тягонапоромеры
-мановакуумметры с крайними пределами не превышающими ±20 кПа
Данные приведены согласно ГОСТ 2405-88
Большинство отечественных и импортных манометров изготавливаются в соответствии с общепринятыми стандартами, в связи с этим манометры различных марок заменяют друг друга. При выборе манометра нужно знать: предел измерения, диаметр корпуса, класс точности прибора. Также важны расположение и резьба штуцера. Эти данные одинаковы для всех выпускаемых в нашей стране и Европе приборов.
Также существуют манометры измеряющие абсолютное давление, то есть избыточное давление+атмосферное
Прибор, измеряющий атмосферное давление, называется барометром.
В зависимости от конструкции, чувствительности элемента различают манометры жидкостные, грузопоршневые, деформационные (с трубчатой пружиной или мембраной). Манометры подразделяются по классам точности:
0,15; 0,25; 0,4; 0,6; 1,0; 1,5; 2,5; 4,0 (чем меньше число, тем точнее прибор).
1   2   3   4   5   6   7   8   9   10   ...   13

Вакуумметр
Вакуумме́тр — вакуумный манометр, прибор для измерения давления разреженных газов.
По принципу действия вакуумметры можно подразделить на следующие типы:

70

классические — являются обычными манометрами (жидкостными либо анероидами) для измерения малых давлений. В жидкостных вакуумметрах в измерительном колене применяется масло с известной плотностью и с по возможности малым давлением пара с тем, чтобы не нарушать вакуум. Обычно жидкостные манометры изолируют от остальной вакуумной системы при помощи азотных ловушек — специальных устройств наполняемых жидким азотом и служащих для вымораживания паров рабочего вещества манометра. Область измеряемых давлений от 10 до 100000 Па.

ёмкостные — основаны на изменении ёмкости конденсатора при изменении расстояния между обкладками. Одна из обкладок конденсатора выполняется в виде гибкой мембраны. При изменении давления мембрана изгибается и меняет ёмкость конденсатора, которую можно измерить. После градуировки возможно использовать прибор для измерения давлений. Область измеряемых давлений от 1 до 1000 Па.

термопарные — принцип действия основан на охлаждении за счёт теплопроводности. Термопара находится в контакте с нагреваемым проводом.
Чем лучше вакуум, тем меньше теплопроводность газа, и следовательно выше температура проводника (теплопроводность разрежённого газа прямо пропорциональна его давлению). Проградуировав подключенный к термопаре гальванометр при известных давлениях можно использовать измеряемое значение температуры для определения давления. Область измеряемых давлений от 10−3 до 10 Torr

ионизационные — принцип действия основан на ионизации газа. При понижении давления газа уменьшается число атомов, способных подвергнуться ионизации, и соответственно ионизационный ток, текущий между электродами при данном напряжении. Область измеряемых давлений от 10−12 до от 10−1 Torr.
Подразделяются на вакуумметры с холодным катодом (Пеннинга и магнетронные) и с накаливаемым катодом.
Термопарный и ионизационный вакууметры широко применяются в промышленности и экспериментах, так как являются массовыми, хорошо повторяемыми приборами. Практически выполняются в виде электронных ламп со стеклянным отростком, соединяющимся с исследуемым объёмом с помощью шланга или припаивания.

71
Лекция №9
Измерение расхода пара, газа и жидкости.
Количество вещества выражается в единицах объема или массы (т.е. в м3 или килограммах). Количество жидкости с равной степенью точности может быть измерено и объемным, и массовым методами, количество газа – только объемным. Для твердых и сыпучих материалов используется понятие насыпной или объемной массы, которая зависит от гранулометрического состава сыпучего материала. Для более точных измерений количество сыпучего материала определяется взвешиванием.
Расходом вещества называется количество вещества, проходящее через данное сечение трубопровода в единицу времени. Массовый расход измеряется в кг/с, объемный – в м3/с.
Приборы, измеряющие расход, называются расходомерами. Эти приборы могут быть снабжены счетчиками (интеграторами), тогда они называются расходомерами-счетчиками. Такие приборы позволяют измерять расход и количество вещества.
В качестве электрических расходомеров могут быть использованы вихреакустические, вихревые, кориолисовые преобразователи расхода или расходомеры переменного перепада давления.
Датчики расхода o
Механические счетчики расхода o
Перепадомеры o
Ультразвуковые расходомеры

Ультразвуковые время-импульсные

Ультразвуковые фазового сдвига

Ультразвуковые доплеровские

Ультразвуковые корреляционные o
Электромагнитные расходомеры o
Кориолисовые расходомеры o
Вихревые расходомеры
Вихреакустические преобразователи
Предназначены для измерения объемного расхода и объема воды и прочих жидкостей. Суть вихреакустического принципа измерения расхода состоит в измерении скорости потока путем определения частоты образования вихрей за телом обтекания, установленным в проточной части преобразователя расхода
(рис. 1.23). Определение частоты вихреобразования производится при помощи


72 ультразвука, имеющего частоту 1 МГц («ультразвуковое детектирование вихрей»).
От генератора на ПИ подается переменное напряжение, которое преобразуется в ультразвуковые колебания. При прохождении через поток, в результате взаимодействия с вихрями, ультразвуковые колебания модулируются по фазе. На ПП модулированные колебания вновь преобразуются в напряжение, которое подается на детектор.
Напряжение на выходе фазового детектора по частоте и амплитуде соответствует частоте и интенсивности следования вихрей, которая, в силу пропорциональности скорости потока, является мерой расхода.
Для фильтрации случайных составляющих сигнал с фазового детектора подается на микропроцессорный адаптивный фильтр и затем в блок формирования выходных сигналов.
Для расширения динамического диапазона в область малых расходов, где характеристика преобразователя нелинейна и зависит от температуры, применяется температурная коррекция. Для этого в корпус проточной части вмонтирован термодатчик, сигнал от которого вводится в программу вычисления расхода.
Проточная часть преобразователя изготавливается из нержавеющей стали и обрабатывается по высокому классу чистоты поверхности, что минимизирует образование отложений и тем самым стабилизирует метрологические характеристики.
Серия вихреакустических преобразователей расхода предназначена для измерения объемного расхода и объема водопроводной, теплофикационной, технической воды, водных растворов, пластовых вод с вязкостью не более 2 сСт.

73
Сферы применения:
_ системы коммерческого учета тепловой энергии, ГВС, ХВС на объектах коммунального хозяйства и промышленности;
_ системы технологического контроля, АСУТП, АСКУЭ в различных отраслях промышленности.
УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ
Суть вихреакустического принципа измерения расхода состоит в измерении скорости потока путем определения частоты образования вихрей за телом обтекания, установленным в проточной части преобразователя расхода.
Определение частоты вихреобразования производится при помощи ультразвука, имеющего частоту 1МГц ("ультразвуковое детектирование вихрей").
Преобразователь представляет собой моноблочную конструкцию, состоящую из проточной части и электронного блока. В корпусе проточной части расположены: тело обтекания _ призма трапецеидального сечения (1), пьезоизлучатели ПИ (2), пьезоприемники ПП (3) и термодатчик (7).
Электронный блок включает в себя генератор (4), фазовый детектор (5), микропроцессорный адаптивный фильтр с блоком формирования выходных сигналов (6), смонтированные на печатной плате.
Тело обтекания (ТО) установлено на входе жидкости в проточную часть.
При обтекании ТО потоком жидкости за ним образуется вихревая дорожка, частота следования вихрей в которой с высокой точностью пропорциональна скорости потока, а, следовательно, и расходу.
За ТО в корпусе проточной части диаметрально противоположно друг другу установлены стаканчики, в которых собраны ультразвуковой пьезоизлучатель
(ПИ) и пьезоприемник (ПП).
От генератора на ПИ подается переменное напряжение, которое преобразуется в ультразвуковые колебания. При прохождении через поток, в результате взаимодействия с вихрями, ультразвуковые колебания модулируются по фазе. На ПП модулированные ультразвуковые колебания вновь преобразуются в напряжение, которое подается на фазовый детектор.
На фазовом детекторе определяется разность фаз


74 между:
_ сигналами с ПП и опорного генератора _ для однолучевых преобразователей;
_ сигналами с ПП первой и второй пары пьезоэлементов
_ для двухлучевых преобразователей.
Напряжение на выходе фазового детектора по частоте и амплитуде соответствует частоте и интенсивности следования вихрей, которая, в силу пропорциональности скорости потока, является мерой расхода.
Для фильтрации случайных составляющих сигнал с фазового детектора подается на микропроцессорный адаптивный фильтр и, затем, в блок формирования выходных сигналов. Для повышения достоверности показаний при обработке сигнала вычисляется дисперсия периода колебаний вихрей.
Для расширения динамического диапазона в область малых расходов, где характеристика преобразователя нелинейна и зависит от температуры теплоносителя, применяется температурная коррекция. Для этого в корпусе проточной части установлен термодатчик, сигнал от которого вводится в программу вычисления расхода. Проточная часть преобразователя изготовлена из нержавеющей стали и обработана по высокому классу чистоты поверхности, что минимизирует образование отложений и тем самым стабилизирует метрологические характеристики. Для проведения периодической поверки по беспроливной (имитационной) методике ТО выполнено съемным.
Электронный блок размещен в отдельном корпусе, соединенном с проточной частью трубчатым кронштейном.
Внутри трубчатого кронштейна проходят провода, соединяющие плату электроники с пьезоэлементами.
Преобразователи в базовом исполнении имеют в обязательном порядке импульсные выходные сигналы
На боковой стороне корпуса электронного блока располагаются штепсельный разъем или сальниковый кабельный ввод, которые служат для соединения преобразователей с вторичными приборами (вычислителями) и источниками питания. Корпус закрыт крышками, уплотнение которых производится резиновыми прокладками, что обеспечивает его герметичность.
Вихревые преобразователи
Предназначены для измерения объемного расхода газа. Суть вихревого принципа измерения расхода состоит в измерении скорости потока путем определения частоты образования вихрей за телом обтекания, установленным в проточной части преобразователя расхода.
Определение частоты вихреобразования производится при помощи двух пьезодатчиков, фиксирующих