ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.04.2024
Просмотров: 44
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
3-5. Регулирование напряжения переменного тока (на примере сх. используемой встречно-параллельное включение тиристоров, диаграммы при разном характере нагрузки и соотношении α и φ, нагрузки R и L).
Простейший регулятор однофазного переменного напряжения состоит из двух встречно-параллельно включенных тиристоров, соединенных последовательно с нагрузкой, как показано на рис. 3.2.1.
На рис. 3.2.2 построены диаграммы напряжений и токов регулятора. Углы управления тиристорами должны быть такими, чтобы ток в последовательной активно-индуктивной нагрузке был прерывистым. Соотношение для угла регулирования , длительности протекания тока через тиристор и параметров нагрузки LH, RH здесь такое же, как у однофазного выпрямителя в режиме прерывистого тока. Увеличение угла регулирования приводит к уменьшению и росту искажения кривой напряжения на нагрузке UH и за счет этого к изменению его действующего значения и первой гармоники. При этом ухудшается и качество потребляемого из сети тока из-за роста сдвига фазы тока относительно напряжения (увеличение потребления реактивной мощности) и за счет ухудшения его формы вследствие уменьшения длительности протекания .
РИС. 3.2.2
Возможен и другой способ регулирования переменного напряжения в этой схеме - широтно-импульсное регулирование при естественной коммутации. На рис. 3.2.3 показаны диаграммы входного напряжения и входного тока такого регулятора (первая диаграмма) и выходного напряжения (вторая диаграмма) при работе на активную нагрузку (термопечи сопротивления). Здесь уже цель регулирования состоит в изменении действующего значения напряжения на активной нагрузке для преобразования электрической энергии в тепловую. При таком регулировании период входного тока регулятора Т
U много больше периода сетевого напряжения Т1 и в этом токе появляются субгармоники, т.е. гармоники с частотой ниже частоты сетевого напряжения. Это, в свою очередь, при «слабой» сети может вызвать в ней низкочастотные колебания уровня напряжения, приводящие к мерцанию освещения (фликкер-эффект), нормы которого устанавливаются ГОСТом на качество электроэнергии.
Улучшение напряжения, основные схемы которых приведены на рис. 3.2.4. Схема на рис. 3.2.4,а объединяет три однофазных регулятора и при отсутствии нулевого провода характеризуется лучшим качеством выходного фазного напряжения, как в шестипульсной схеме, а не как в двухпульсной схеме однофазного регулятора. Форма напряжения на фазе нагрузки и ток фазы показаны на рис. 3.2.5,а,б для активной и активно-индуктивной нагрузки соответственно. Более простая схема регулятора на рис. 3.2.4,б характеризуется худшим качеством выходного напряжения, проявляющимся в неодинаковости форм полуволн фазного напряжения, но без постоянной составляющей в нем. Схемы регуляторов на рис. 3.2.4,в,г применимы при условии доступности всех шести концов трехфазной нагрузки. При использовании трансформатора в регуляторе возможно более качественное регулирование переменного напряжения за счет использования комбинации фазового и амплитудного способов регулирования.
39. Входная характеристика инвертора, ведомого сетью
При анализе нормальных режимов работы инвертора важно знать следующие основные его характеристики: входную и ограничительную. Входная характеристика представляет собой зависимость входного напряжения инвертора Ud от среднего значения входного тока Id.
Рис.5.2. Входная и ограничительная характеристика инвертора при ωLd = ∞
Входное напряжение инвертора при допущении равенства нулю падения напряжения в тиристорах и активных сопротивлениях схемы можно представить в виде суммы двух составляющих. Первая составляющая входного напряжения - это напряжение холостого хода Ud0, равное входному напряжению при мгновенной коммутации вентилей, т.е. при угле коммутации g = 0. Второй составляющей является среднее значение падения напряжения ΔUна интервалах коммутации. В отличие от выпрямителей, у которых падение напряжения вычитается из напряжения холостого хода, в ведомых инверторах эти составляющие суммируются. На рис. 5.2 представлены входные характеристики однофазного инвертора при различных углах β, из которых видно, что они в отличие от внешних характеристик выпрямителя, представленных на рис. 5.2 в правой полуплоскости, имеют возрастающий характер (напряжение увеличивается с ростом тока). При этом внешние характеристики выпрямителя являются продолжением входных характеристик инвертора при условии равенства углов α и β.
Напряжения на шинах постоянного тока преобразователей при Id = 0 (т.е. на холостом ходу) одинаковы для выпрямительного и инверторного режимов и зависят от угла β (или α). Эту зависимость обычно называют регулировочной характеристикой. Рассматриваемые преобразователи обладают свойством обратимости, т.е. путем изменения углов управления и переключения полярности источника постоянного тока можно переходить от выпрямительного режима к инверторному и наоборот.
40-43. Параллельный инвертор тока
Силовая схема: содержит входную индуктивность Ld равную бесконечности, кроме того сделаем допущение, что тиристоры идеальны, во включенном состоянии RТИР=0, а также считаем, что напряжение и ток нагрузки вследствие установки фильтров (которые на рис. Не показаны) изменяются по синусоидальному закону, это допущение позволяет использовать векторные диаграммы для анализа работы инвертора. Кроме входной индуктивности силовая схема содержит 4 рабочих тиристора, в диагональ переменного тока подключено сопротивление нагрузки, а параллельно ей конденсатор, который служит для коммутации. Сопротивление нагрузки может содержать и индуктивность, но эта индуктивность должна быть полностью скомпенсирована реактивным сопротивлением коммутирующего конденсатора, в целом цепь нагрузки должна иметь емкостный характер.
В положительном полупериоде включаем тиристоры VS1, VS4, они находятся под действием прямого напряжения и включается, ток Id=const начинает протекать через цепь нагрузки инвертора, то есть iи=Id по величине. За время протекания тока коммутирующий конденсатор заряжается этим током и его полярность +à-. В следующем полупериоде включаются тиристоры VS2,VS3, при этом образуется два контура для разряда коммутирующего конденсатора:
1) Через тиристор VS1 и тиристор VS2.
2) Через тиристор VS3 и тиристор VS4.
Коммутирующие токи iK1, iK2 будут выключать ранее работающие тиристоры и включать вступающие в работу тиристоры. Как только в обоих контурах сопротивление будет равно нулю, тиристоры выключаются. Ток инвертора скачком меняет свое направление на противоположное. К концу отрицательного полупериода коммутирующий конденсатор опять перезарядиться током, который потребляется из сети и полярность напряжения на конденсаторе смениться на противоположную. И в момент следующего положительного полупериода, коммутирующие токи изменят свое направление на противоположное и переключат ключи. В цепи нагрузки имеется фильтр, выделяющий 1-ую гармонику тока, см рисунок выше. При емкостном характере нагрузки напряжение отстает от тока на какой-то угол. Чтобы убедиться, что в конце положительного полупериода тиристоры VS1 и VS4 надежно выключатся построим диаграмму изменения напряжения. Пока тиристор VS1 был включен, то U
VS1=0.
Из диаграммы видно что после выключения вентиля к нему прикладывается отрицательное напряжение для восстановления запирающих свойств (угол d - угол восстановления запирающих свойств тиристоров).
Угол сдвига между током и напряжением инвертора принято называть углом опережения: b
Для надежной работы инвертора необходимо, чтобы угол восстановления запирающих свойств d=b был больше или равен wtВ.З.С – наступает режим опрокидывания или срыва инвертора, а данный режим является аварийным.
44. Последовательный инвертор тока
Схема последовательного инвертора тока отличается от предыдущей способом подключения коммутирующего конденсатора. В данном случае коммутирующий конденсатор включен последовательно сопротивлению нагрузки. В положительном полупериоде включают тиристоры VS1 и VS4, протекает ток нагрузки. Током нагрузки конденсатор заряжается до полярности: +,-. Далее включают тиристоры VS2, VS3 – в данный момент включены все четыре вентиля. Образуется два контура разряда: iK – коммутирующие токи. Отличие этого инвертора от предыдущего заключается в том, что в предыдущем случае была мгновенная коммутация. Если в сопротивлении нагрузки имеется и активное и индуктивное сопротивление, и активное сопротивление меньше критического значения, коммутирующий ток будет меняться по синусоиде (колебательный контур), либо если активное сопротивление больше критического значения, то переходный процесс идет по экспоненте, учитывается лишь начальный участок, поэтому коммутирующий ток линейно возрастает. Ток в цепи инвертора будет по линейному закону снижаться. Как только ток инвертора сменит свое значение на противоположное, то тиристоры VS1 и VS4 выключаться, остаются работать тиристоры VS2, VS3. Аналогичные процессы происходят и в другом полупериоде.
Внешняя характеристика последовательного инвертора тока зависит только от коэффициента мощности нагрузки и является жесткой, так как уменьшается время восстановления запирающих свойств тиристоров. Последовательный инвертор тока не может устойчиво работать в области малых нагрузок из за низкого значения угла опережения , но при этом появляется перенапряжения на тиристорах. В области больших нагрузок устойчивость работы инвертора возрастает, так как растет угол.
45. Виды коммутации в автономных инверторах
Автономные инверторы — это преобразователи постоянного тока в переменный однофазный или многофазный ток, коммутация тока в которых осуществляется независимо от процессов во внешних электрических цепях благодаря наличию дополнительных коммутирующих устройств внутри самого преобразователя. На его выходе можно получать переменный ток теоретически любой частоты, плавно регулировать от нуля до максимального значения частоту и напряжение. Благодаря этому свойству автономные инверторы находят все более широкое применение в регулируемых электроприводах с асинхронными двигателями трехфазного тока. Особенно перспективно применение автономных инверторов в тяговых электроприводах электровозов, электропоездов, тепловозов.
В зависимости от способа принудительной коммутации тока, схемы инвертора, параметров источника питания и нагрузки автономные инверторы делятся на виды, отличающиеся специфическими особенностями процессов переключений тока. Полная коммутация с переключением тока с одной ветви схемы на другую в автономных инверторах происходит на нескольких этапах, важнейшими из которых являются: уменьшение прямого тока в одном из тиристоров до нуля, задержка приложения прямого напряжения на этом тиристоре до полного восстановления его запирающей способности, нарастание прямого тока во втором тиристоре. Эти события могут совершаться совместно или последовательно. Средства для осуществления надежной коммутации обычно являются одной из наиболее трудных проблем в автономных инверторах. Принципиально эти средства можно разделить на два класса. К первому классу следует отнести полностью управляемые силовые полупроводниковые приборы (силовые транзисторы и запираемые тиристоры). Второй класс составляют обычные не полностью управляемые СПП (однооперационные тиристоры), дополненные специальными узлами принудительной коммутации, например в виде предварительно заряженных конденсаторов и вспомогательных тиристоров.