ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.04.2024
Просмотров: 40
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
(5.9)
Если частота коммутации ключей соответствует частоте резонанса контура , то форма напряжения на нагрузке близка к гармонической, а его действующее значение (5.10)
Нагрузка может включаться последовательно (как на рис.5.13) или параллельно любому из реактивных элементов, обычно конденсатору.
Достоинства резонансных инверторов:
а) уменьшение потерь мощности на коммутацию. Особенно в условиях большого технологического разброса параметров ключей. Обеспечивается, так называемая, “мягкая” коммутация,
б) снижение уровня высокочастотных помех как излучаемых (радиопомех), так и распространяемых по проводам (кондуктивных), в питающую сеть и в нагрузку,
в) отсутствие сквозных токов в двухтактных схемах приводит к
повышению надежности.
Недостатки резонансных инверторов:
а) значительное превышение напряжения на реактивных элементах над напряжением питания из-за явления резонанса;
б) увеличение габаритов сглаживающих фильтров по сравнению с прямоугольным напряжением;
в) более высокая установочная мощность ключей.
Примерная схема транзисторного преобразователя с резонансным инвертором приведена на рис.5.14. Нагрузка RHподключена параллельно конденсатору СК через двухполупериодный выпрямитель VD1 и VD2.
Рисунок 5.14 – Преобразователь с резонансным инвертором
Трансформатор TV обеспечивает согласование по уровню напряжения и гальваническую развязку сети и нагрузки. Стабилизация выходного напряжения осуществляется частотной модуляцией тактовой частоты ( fT) схемы управления. Для чего fT выбрана несколько меньше резонансной частоты контура LK CK. Регулировкой частоты можно получить нестабильность около 0,1%. Уровень помех примерно на 15 дБ ниже, чем в не резонансных схемах инверторов.
Для управления ключами инверторов разработано много специализированных и универсальных контроллеров, например, 1114ЕУ1…1114ЕУ5, UC3846, UC3875, TL494, TL599 и др.
48. Преобразователи частоты с промежуточным звеном постоянного тока
Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.
Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.
Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.
В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.
Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора АИН, системы управления ШИМ, системы автоматического регулирования САР, дросселя Lв и конденсатора фильтра Cв. Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.
Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.
Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2...15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.
Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов. Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодулирована по синусоидальному закону. Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.
Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным (АР) за счет изменения входного напряжения Uв и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.
Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.
Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения.
Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов - запираемых GTO - тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором. На рис. 6.8 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.
Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно с диодами обратного тока D1-D6.
За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 - реактивная составляющая тока.
50-51. Преобразователи частоты с непосредственной связью
Частотные преобразователи с непосредственной связью имеют второе название — непосредственные преобразователи частоты (НПЧ). Преобразователи этого класса делятся по типу силовых вентилей на преобразователи с естественной и преобразователи с принудительной коммутацией.
В преобразователях с непосредственной связью с естественной коммутацией (циклоконверторах) силовая часть собрана на быстродействующих тиристорах. Тиристорный блок может быть собран по различным схемам. Наиболее часто встречается нулевая, мостовая, встречно-параллельная или перекрестная схема, с совместным или раздельным управлением. В промышленности чаще всего применяют мостовую схему. Пример структурной силовой схемы тиристорного частотного преобразователя с непосредственной связью и структурная схема мостового частотного преобразователя показана на рисунке.
Достоинства преобразователя частоты с непосредственной связью с естественной коммутацией
Достоинства НПЧ определяются его относительно простой конструкцией. К ним относятся:
Благодаря блочно-модульной конструкции частотные преобразователи с непосредственной связью имеют возможность неограниченно наращивать мощность НПЧ, удобны в эксплуатации и при создании горячего резерва;
Основные недостатки частотных преобразователей с непосредственной связью
Недостатки частотных преобразователей НПЧ связаны с простотой их конструкции. В таких преобразователях существует ограничение максимальной выходной частоты. Максимальная выходная частота не может превышать 70% частоты питающей сети. Другим препятствием для широкого применения НПЧ, является низкий коэффициент мощности и несинусоидальность выходного напряжения. Высокая сложность цепей управления, обуславливает применение НПЧ в тихоходных синхронных и асинхронных электроприводах средней и большой мощности.
Частотные преобразователи с принудительной коммутацией и непосредственной связью с сетью
НПЧ с принудительной коммутацией реализованы на полностью запираемых ключах. В качестве таких ключей используются транзисторы или запираемые тиристоры. Управление этими ключами осуществляется на принципе широтно-импульсной модуляции. Пример построения силовой схемы преобразователя частоты показана на рисунке.
В такой схеме включения любую фазу сети можно непосредственно подключить к любой фазе двигателя.
В современных системах управления электроприводами используются два типа частотных преобразователей.
52. Автономный инвертор напряжения
АИН формирует в нагрузке переменное напряжение путем периодического подключения ее к источнику напряжения за счет поочередного попарного включения вентилей (рис. 1, а).
Источник питания работает в режиме генератора напряжения (аккумуляторные батарея или выпрямитель с емкостным фильтром), назначение конденсатора будет разъяснено дополнительно.
Рис. 1. Автономный инвертор напряжения (а) и диаграмма его работы (б)
Вентили должны быть полностью управляемые (ДОТ) или каждый тиристор снабжается схемой принудительной коммутации. При работе схемы на нагрузке формируются прямоугольные импульсы напряжения (рис. 1, б), а форма тока зависит от ее характера. Если нагрузка чисто активная, то форма тока совпадает с формой напряжения (пунктир на рис. 1, б),если нагрузка активно-индуктивная, ток iн меняется по экспоненте с постоянной времени . При запирании очередной пары вентилей (например, VD1 и VD4)и отпирании второй пары напряжение Uн меняется скачком, а ток некоторое время сохраняет свое направление. Для обеспечения прохождения этого тока используются так называемые обратные диоды VD5... VD8, далее ток замыкается через конденсатор С.
Частота тока в нагрузке определяется схемой управления, нагрузочная характеристика АИН - жесткая, так как напряжение на нагрузке практически равно Un = Е.
Так как входной ток собственно инвертора становится (при RL-нагрузке) знакопеременным, то при работе АИН от выпрямителя необходим конденсатор С большой емкости. АИН могут работать в широком диапазоне нагрузок - от холостого хода до значения, при котором возможна перегрузка вентилей.
Максимальное значение тока нагрузки при симметричном характере выходного напряжения равно
Если частота коммутации ключей соответствует частоте резонанса контура , то форма напряжения на нагрузке близка к гармонической, а его действующее значение (5.10)
Нагрузка может включаться последовательно (как на рис.5.13) или параллельно любому из реактивных элементов, обычно конденсатору.
Достоинства резонансных инверторов:
а) уменьшение потерь мощности на коммутацию. Особенно в условиях большого технологического разброса параметров ключей. Обеспечивается, так называемая, “мягкая” коммутация,
б) снижение уровня высокочастотных помех как излучаемых (радиопомех), так и распространяемых по проводам (кондуктивных), в питающую сеть и в нагрузку,
в) отсутствие сквозных токов в двухтактных схемах приводит к
повышению надежности.
Недостатки резонансных инверторов:
а) значительное превышение напряжения на реактивных элементах над напряжением питания из-за явления резонанса;
б) увеличение габаритов сглаживающих фильтров по сравнению с прямоугольным напряжением;
в) более высокая установочная мощность ключей.
Примерная схема транзисторного преобразователя с резонансным инвертором приведена на рис.5.14. Нагрузка RHподключена параллельно конденсатору СК через двухполупериодный выпрямитель VD1 и VD2.
Рисунок 5.14 – Преобразователь с резонансным инвертором
Трансформатор TV обеспечивает согласование по уровню напряжения и гальваническую развязку сети и нагрузки. Стабилизация выходного напряжения осуществляется частотной модуляцией тактовой частоты ( fT) схемы управления. Для чего fT выбрана несколько меньше резонансной частоты контура LK CK. Регулировкой частоты можно получить нестабильность около 0,1%. Уровень помех примерно на 15 дБ ниже, чем в не резонансных схемах инверторов.
Для управления ключами инверторов разработано много специализированных и универсальных контроллеров, например, 1114ЕУ1…1114ЕУ5, UC3846, UC3875, TL494, TL599 и др.
48. Преобразователи частоты с промежуточным звеном постоянного тока
Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.
Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.
Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.
В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.
Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора АИН, системы управления ШИМ, системы автоматического регулирования САР, дросселя Lв и конденсатора фильтра Cв. Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.
Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.
Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2...15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.
Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов. Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодулирована по синусоидальному закону. Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.
Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным (АР) за счет изменения входного напряжения Uв и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.
Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.
Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения.
Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов - запираемых GTO - тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором. На рис. 6.8 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.
Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно с диодами обратного тока D1-D6.
За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 - реактивная составляющая тока.
50-51. Преобразователи частоты с непосредственной связью
Частотные преобразователи с непосредственной связью имеют второе название — непосредственные преобразователи частоты (НПЧ). Преобразователи этого класса делятся по типу силовых вентилей на преобразователи с естественной и преобразователи с принудительной коммутацией.
В преобразователях с непосредственной связью с естественной коммутацией (циклоконверторах) силовая часть собрана на быстродействующих тиристорах. Тиристорный блок может быть собран по различным схемам. Наиболее часто встречается нулевая, мостовая, встречно-параллельная или перекрестная схема, с совместным или раздельным управлением. В промышленности чаще всего применяют мостовую схему. Пример структурной силовой схемы тиристорного частотного преобразователя с непосредственной связью и структурная схема мостового частотного преобразователя показана на рисунке.
Достоинства преобразователя частоты с непосредственной связью с естественной коммутацией
Достоинства НПЧ определяются его относительно простой конструкцией. К ним относятся:
-
довольно высокий КПД, который достигается однократным преобразованием электроэнергии в преобразователе; -
возможность обмена энергией между двигателем и электрической сетью. Благодаря такой возможности преобразователь может работать как в двигательном, так и в тормозном режимы работы, причем с рекуперацией энергии в сеть; -
примененяемые тиристоры в схемах с естественной коммутацией, являются более надежными и дешевыми и обладают большей перегрузочной способностью, чем полностью управляемые приборы, применяемые в схемах с принудительной коммутацией; -
в таких частотных преобразователях имеется возможность получения довольно низких частот выходного напряжения частотного преобразователя. Это обеспечивает возможность равномерной работы двигателя с малыми скоростями;
Благодаря блочно-модульной конструкции частотные преобразователи с непосредственной связью имеют возможность неограниченно наращивать мощность НПЧ, удобны в эксплуатации и при создании горячего резерва;
Основные недостатки частотных преобразователей с непосредственной связью
Недостатки частотных преобразователей НПЧ связаны с простотой их конструкции. В таких преобразователях существует ограничение максимальной выходной частоты. Максимальная выходная частота не может превышать 70% частоты питающей сети. Другим препятствием для широкого применения НПЧ, является низкий коэффициент мощности и несинусоидальность выходного напряжения. Высокая сложность цепей управления, обуславливает применение НПЧ в тихоходных синхронных и асинхронных электроприводах средней и большой мощности.
Частотные преобразователи с принудительной коммутацией и непосредственной связью с сетью
НПЧ с принудительной коммутацией реализованы на полностью запираемых ключах. В качестве таких ключей используются транзисторы или запираемые тиристоры. Управление этими ключами осуществляется на принципе широтно-импульсной модуляции. Пример построения силовой схемы преобразователя частоты показана на рисунке.
В такой схеме включения любую фазу сети можно непосредственно подключить к любой фазе двигателя.
В современных системах управления электроприводами используются два типа частотных преобразователей.
-
Частотные преобразователи с непосредственной связью(НПЧ); -
Частотные преобразователи со звеном постоянного тока.
52. Автономный инвертор напряжения
АИН формирует в нагрузке переменное напряжение путем периодического подключения ее к источнику напряжения за счет поочередного попарного включения вентилей (рис. 1, а).
Источник питания работает в режиме генератора напряжения (аккумуляторные батарея или выпрямитель с емкостным фильтром), назначение конденсатора будет разъяснено дополнительно.
Рис. 1. Автономный инвертор напряжения (а) и диаграмма его работы (б)
Вентили должны быть полностью управляемые (ДОТ) или каждый тиристор снабжается схемой принудительной коммутации. При работе схемы на нагрузке формируются прямоугольные импульсы напряжения (рис. 1, б), а форма тока зависит от ее характера. Если нагрузка чисто активная, то форма тока совпадает с формой напряжения (пунктир на рис. 1, б),если нагрузка активно-индуктивная, ток iн меняется по экспоненте с постоянной времени . При запирании очередной пары вентилей (например, VD1 и VD4)и отпирании второй пары напряжение Uн меняется скачком, а ток некоторое время сохраняет свое направление. Для обеспечения прохождения этого тока используются так называемые обратные диоды VD5... VD8, далее ток замыкается через конденсатор С.
Частота тока в нагрузке определяется схемой управления, нагрузочная характеристика АИН - жесткая, так как напряжение на нагрузке практически равно Un = Е.
Так как входной ток собственно инвертора становится (при RL-нагрузке) знакопеременным, то при работе АИН от выпрямителя необходим конденсатор С большой емкости. АИН могут работать в широком диапазоне нагрузок - от холостого хода до значения, при котором возможна перегрузка вентилей.
Максимальное значение тока нагрузки при симметричном характере выходного напряжения равно