ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.04.2024
Просмотров: 42
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Принцип работы инвертора на полностью управляемых приборах. Силовые транзисторы используются как ключи, получая сигналы управления / по цепи базы от отдельной схемы управления СУ, построенной на основе генератора прямоугольных импульсов. Сигналы управления, поступающие на транзисторы VT1 и F72, не совпадают по времени, что устраняет появление сквозного тока источника питания.
Сигналы управления подаются на VT1, VT2 с периодом следования Т. При активной нагрузке поочередное включение транзисторов обуславливает приложение ЭДС источника Е к первичной обмотке трансформатора Т, выполненного с выведенной средней (нулевой) точкой 0. По первичным полуобмоткам протекают токи i11, i12. На вторичной обмотке возникает напряжение м2 прямоугольной формы. Ток i2 при активной нагрузке R повторяет форму кривой и2 и переходит через нулевое значение одновременно с моментом переключения транзисторов. При работе транзисторов в нулевой схеме в течение непроводящей части периода к ним прикладывается в прямом направлении напряжение 2Е.
В реальных схемах нагрузка носит, как правило, активно-индуктивный характер. Во время переключения транзисторов в такой схеме возникают условия, которые могут привести к большим перенапряжениям, поскольку ток в цепи с индуктивным элементом не может мгновенно изменить направление. Следовательно, для предупреждения перенапряжения в схеме должна быть предусмотрена ветвь тока нагрузки на интервалах t0 — t1 t2 — t3 после переключения транзистора.
Для пропуска тока могут быть включены разнообразные устройства, например резисторы, конденсаторы или дополнительные цепи с полупроводниковыми приборами. Наиболее экономичное решение было предложено выполнять по схеме с обратными диодами VD1, VD2, включенными встречно-параллельно основным (главным) транзисторам VT1, VT2 [4]. Для этого случая на рис. 9.1, б показаны формы напряжений и токов в схеме инвертора. В схеме с обратными диодами после переключения транзистора контур индуктивного тока нагрузки проходит через диод, включенный встречно ЭДС источника Е. Входной ток id инвертора на интервалах переключения тока (спадания тока нагрузки до нуля) протекает в обратном направлении, обеспечивая возврат в источник питания энергии, накопленной в дросселе L. Среднее значение тока Id источника определяется потреблением энергии активным сопротивлением R цепи нагрузки. При идеальной индуктивной нагрузке теоретически возможно Id = 0.
Принцип работы инвертора на однооперационных тиристорах. Рассмотрим схему инвертора, в которой требуются дополнительные элементы для осуществления коммутации. Схема однофазного инвертора на однооперационных тиристорах VT1, VT2 называется параллельным инвертором и строится по принципу коммутации тока с использованием конденсатора С, включенного параллельно цепи нагрузки.
Широко известная схема однофазного параллельного инвертора отличается от схемы наличием дросселя в цепи постоянного тока с индуктивностью Ld и коммутирующего конденсатора емкостью С. В этой схеме принудительное выключение однооперационных тиристоров VT1, VT2 осуществляется предварительно заряженным коммутирующим конденсаюром. Коммутация тиристора VT1 начинается с момента (t2, t6), когда отпирается второй тиристор VT2, и конденсатор С, заряженный так, что верхняя обкладка положительна, обеспечивает обратное напряжение на запираемом тиристоре VT1. Интервалы времени (t2 — t3, t6 — t7 дляVT1; t0 — t1, t4 —15 для VT2) должны быть не менее времени выключения тиристора.
46. Инверторы напряжения на тиристорах
Тиристорные инверторы – это устройства, которые работают на автономную нагрузку и предназначены для преобразования напряжения постоянного тока в напряжение переменного тока заданной или регулируемой частоты.
Применение:
1. В системах электроснабжения потребителей переменного тока, когда единственным источником питания является источник напряжения постоянного тока (например: аккумуляторная или солнечная батарея).
2. В системах гарантированного электроснабжения при исчезновении напряжения сети питания (например: для личных нужд электростанций, ЭВМ)..
3. Для частотного регулирования скорости асинхронных двигателей.
4. Для питания потребителей переменного тока от линий электроснабжений постоянного тока.
5. В конверторах для преобразования постоянного напряжения одной величины в постоянное напряжение другой величины.
Коммутационными элементами в инверторах является тиристоры или силовые транзисторы.
В зависимости от специфики электромагнитных процессов различают инверторы тока и инверторы напряжения (рис. 1а, б).
Рисунок 1: а)инвертор тока б) инвертор напряжения
В инверторах тока силовая цепь схемы подключается к источнику постоянного напряжения через дроссель L с большим индуктивным сопротивлением (источник тока должен иметь большое сопротивление).
В инверторах напряжения параллельно источнику питания включается конденсатор большой ёмкости, чем исключается влияние на работу устройства Rвнутр источника (получаем источник напряжения с переменным током). Таким образом, коммутация тиристоров в инверторах тока проводится при постоянном токе, а инверторах напряжения – при постоянном напряжении.
При работе инвертора схема управления поочерёдно включает пару тиристоров VS1, VS4 или VS2, VS3, благодаря чему на нагрузке появляется переменное напряжение – с помощью ключевой схемы нагрузка подключается таким образом, чтобы в ней протекал ток разных направлений.
Если нагрузка инвертора напряжения имеет индуктивный или активно-индуктивный характер, то параллельно тиристорам включают обратные диоды. Этим обеспечивается передача накопленной в индуктивности энергии назад в источник питания.
Основной проблемой при проектировании инверторов является обеспечение надёжного выключения тиристоров, которые находятся в открытом состоянии, перед выключением тиристоров, которые не проводили ток. Это реализуется с помощью схем принудительной коммутации, которые обеспечивают запирание тиристоров в цепях постоянного тока. В цепях постоянного тока включение тиристора осуществляется путём включения параллельно тиристору предварительно заряженного конденсатора с напряжением, полярность которого обратна относительно тиристора (принудительная коммутация).
В цепях постоянного тока выключение тиристора обеспечивается путём включения параллельно тиристору ранее заряженного конденсатора с напряжением, полярность которого обратна по отношению к тиристору (принудительная коммутация). Рис. 2.
Рис. 2 Мостовая схема параллельного тиристорного инвертора
По способу включения конденсатора С с нагрузкой тиристорные инверторы делят на: параллельные, последовательные и последовательно-параллельные.
Принцип действия мостового инвертора (рис. 2):
Тиристоры открываются попарно (VS1 и VS3, VS2 и VS4) на время равное Т / 2 под воздействием положительных импульсов тока, которые подаются от схемы управления в управляющие электроды тиристоров. Выходной ток инвертора распределяется между нагрузкой и конденсатором, заряжая конденсатор полярностью, указанной на рисунке 2 без скобок. При t = T/2 схема управления посылает импульсы и включает тиристоры VS2 и VS4. Конденсатор оказывается закороченным. Ток заряда конденсатора, протекая навстречу анодному току тиристоров VS1 и VS3, уменьшает его до 0 практически мгновенно из-за малости сопротивления в контуре разряда конденсатора через тиристоры.
После падения анодного тока тиристоров VS1 и VS3 до 0 к ним прикладывается обратное напряжение, равное напряжению на конденсаторе. VS1 и VS3 запираются. Конденсатор перезаряжается через VS2 и VS4, приобретая противоположную. Полярность, необходимую для осуществления коммутации на следующем полупериоде, когда включаются VS1 и VS3. Перезаряд конденсатора должен быть медленным.
- 1 2 3 4 5 6
Задание, метод. указания для самостоятельной работы по вопросу: «Принцип работы схемы инвертора с нулевым выводом».
В течение первого полупериода включён VS1. При этом в обмотках трансформатора под действием возрастающего тока I1 наводится ЭДС, под действием которой конденсатор заряжается до U, полярность которого указана без скобок. При Т/2 схема управления подаёт импульс и включается VS2. Конденсатор через открытый тиристор VS2 подключается параллельно тиристору VS1, и он запирается под воздействием обратного напряжения. В течение второго полупериода конденсатор Сперезаряжается, приобретая противоположную полярность (в скобках). В начале третьего полупериода схема управления вновь включит тиристор VS1, коммутирующий конденсатор окажется подключенным через VS1 параллельно VS2, и он запрется. В дальнейшем процесс повторяется.
Рис. 3 Схемаинвертора с нулевым выводом.
47. Резонансные инверторы
Резонансные инверторы широко известны в преобразовательной технике. В них обеспечивается гармоническая форма тока в силовой цепи за счет колебательного контура. Рассмотрим принцип действия резонансного инвертора, который поясняется схемой и эпюрами рис.5.13.
Рисунок 5.13 – Принцип действия резонансного инвертора
На этом рисунке S1, S2 – управляемые ключи, работающие в противофазе. Когда замыкается ключ S1 , начинается рост тока i1 по гармоническому закону. Частота собственных колебаний контура с потерями равна
(5.8)
Через промежуток T0/2 ток в цепи станет равным нулю и ключ размыкается при нулевом значении коммутируемой мощности. В момент времени t1 замыкается ключ S2 и формируется отрицательная полуволна тока в нагрузке вследствие колебательного обмена энергии между реактивными элементами. Снова через T0/2 ток в цепи становится равным нулю, S2 размыкается и замыкается ключ S1 и так далее. Добротность контура