Файл: Общая физиология возбудимых тканей. Рецептор, нерв, синапс, мышцы.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 25.04.2024

Просмотров: 62

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Она реализуется за счет насосной деятельности сердца и разности давления по ходу сосудистого русла, поэтому движение крови по сосудам объясняется из законов гемодинамики, поэтому объемная скорость кровотока определяется: Q=Pн-Рк/R, Рн-Рк-давление в начале и в конце, R-сопротивление току крови.

Поскольку давление в конце систолы практически равно 0, то данная формула приобретает вид: Q=P/R.

Сопротивление вычисляется по формуле Пуазейля: R=8lη/πr^4, где l-длина, η-вязкость, которая зависит от количества белков в плазме и количества эритроцитов, r-радиус сосуда: чем меньше радиус, тем больше сопротивление току крови.

Показатели гемодинамики:

1.объемная скорость кровотока-объем крови, проходящей через сосуды в единицу времени. Данная величина в разных отделах сосудистого русла является постоянной

2.линейная скорость кровотока: V=Q/S, S=πr²: чем больше площадь, тем меньше линейная скорость.

3.величина кровяного давления-это основной показатель гемодинамики, походу сосудистого русла большого круга по мере приближения к правому предсердию данный показатель снижается до 0.

67.Артериальное давление. Факторы, определяющие его величину. Изменение давления в разных отделах сосудистого русла.

Давление в:

-аорте 120-130 мм.рт.ст

-артериях 90-80 мм.рт.ст

-артериолах 60-40 мм.рт.ст

-капиллярах 25 мм.рт. ст.

-венулах 18-12 мм.рт. ст

-венах 8-5 мм.рт.ст

-полой вене 3-1 мм.рт.ст.

Виды давления:

1.систолическое давление, которое возникает в момент систолы левого желудочка: 100-140 мм.рт.ст. Зависит от систолического объема крови, от скорости изгнания крови из желудочка, от растяжения стенок аорты.

2.диастолическое давление, которое возникает в момент диастолы: 60-80 мм.рт.ст. Зависит от систолического объема крови, периферического сопротивления и длительности диастолы.

3.пульсовое давление-разница между диастолическим и систолическим давлением: 35-50 мм.рт.ст.

4.среднее давление-давление, которое было бы в сосудистой системе при непрерывном потоке крови. Это показатель энергии кровотока: 90-95

Факторы:

1)возраст-с возрастом давление повышается из-за потери эластичности

2)пол-у м больше, чем у ж, после 50 наоборот

3)время суток: вечером выше, чем утром на 10

4)мышечная нагрузка

5)эмоции

6)температура окружающей среды

68.Рефлекторная регуляция системного артериального давления (механизмы быстрого реагирования). Роль сосудистых рефлексогенных зон в регуляции АД.


Регуляция системного давления

Давление зависит от объема циркулирующей крови и сопротивление току крови: P=Q*R. Регуляция осуществляется ВНС: блуждающий нерв ЧСС понижает, симпатические нервы увеличивают.

Механизмы регуляции системного давления.

В зависимости от скорости и длительности действия их делят на 3 группы:

1.механизмы кратковременного действия: развиваются быстро в течении нескольких секунд, продолжительность небольшая

2.механизмы промежуточного действия: включаются через несколько минут после отклонения АД, действуют длительное время за счет изменения циркуляции в капиллярном русле; расслабление тонуса сосудов путем снижения тонуса гладких мышц и за счет ренинангиотензинового механизма с помощью почек

3.механизм длительного действия: включается, если предыдущий не норм АД осуществляется с помощью гормонов

69.Сосудистые рефлексы (собственные, сопряженные).

Сосудистые рефлексы-это рефлексы на нормальное давление или на его изменение.

В зависимости от локализации рецепторов:

1)собственные-осуществляются с рецепторов ссс, всегда норм АД:

-прессорные: повышают ад

-депрессорные: понижают ад

2)сопряженные: осуществляются с рецепторов другим систем, всегда изм АД, повышая его:

-экстероцептивные

-интероцептивные

70.Артериальный и венный пульс, их клинико-физиологическая характеристика. Сфигмограмма, флебограмма.

Артериальным пульсом называются ритмические колебания артериальных стенок, обусловленные прохождением пульсовой волны. Пульсовая волна– это расширение артерий в результате систолического повышения артериального давления. Пульсовая волна возникает в аорте во время систолы, когда в нее выбрасывается систолическая порция крови и ее стенка растягивается.

Объективное исследование пульсовой волны осуществляют с помощью сфигмографии. Это метод графической регистрации пульса. Сфигмография позволяет рассчитать такие физиологические показатели, как скорость распространения пульсовой волны, упругость и эластическое сопротивление артериального русла.

В крупных венах регистрируются колебания, называемые венным пульсом. Его запись называется флебографией. На флебограмме выделяют три волны: a, c и v. Волна а называется предсердной. Она отражает повышение венозного давления в период систолы правого предсердия, в результате которой затрудняется венозный приток к сердцу. Волна с обусловлена систолической пульсацией расположенных рядом с веной сонной и подключичной артерий. Волна v возникает вследствие наполнения правого предсердия кровью в период диастолы и вторичным затруднением венозного возврата.


71.Капиллярный кровоток и его особенности. Механизмы обмена веществ между кровью и тканями.

Механизм транскапиллярного обмена. Транскапиллярный (транссосудистый) обмен может осуществляться за счет пассивного транспорта (диффузия, фильтрация, абсорбция), за счет активного транспорта (работа транспортных систем) и микропиноцитоза.

Фильтрационно-абсорбционный механизм обменамежду кровью и интерстициальной жидкостью. Этот механизм обеспечивается за счет действия следующих сил. В артериальном отделе капилляра большого круга кровообращения гидростатическое давление крови равно 40 мм рт. ст. Сила этого давления способствует выходу (фильтрации) воды и растворенных в ней веществ из сосуда в межклеточную жидкость. Онкотическое давление плазмы крови, равное 30 мм рт. ст., препятствует фильтрации, т. к. белки удерживают воду в сосудистом русле. Онкотическое давление межклеточной жидкости, равное 10 мм. рт. ст., способствует фильтрации - выходу воды из сосуда. Таким образом, результирующая всех сил, действующих в артериальном отделе капилляра, равна 20 мм. рт. ст. (40+10-30=20 мм рт. ст.) и направлена из капилляра. В венозном отделе капилляра (в посткапиллярной венуле) фильтрация будет осуществляться следующими силами: гидростатическое давление крови, равное 10 мм рт. ст., онкотическое давление плазмы крови, равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна 10 мм рт. ст. (-10+30-10=10) и направлена в капилляр. Следовательно в венозном отделе капилляра происходит абсорбция воды и растворенных в ней веществ. В артериальном отделе капилляра жидкость выходит под воздействием силы в 2 раза большей, чем она входит в капилляр в его венозном отделе. Возникающий, таким образом, избыток жидкости из интерстициальных пространств оттекает через лимфатические капиляры в лимфатическую систму.

В капиллярах малого круга кровообращения транскапиллярный обмен осуществляется за счет действия следующих сил: гидростатическое давление крови в капиллярах, равное 20 мм рт. ст., онкотическое давление плазмы крови; равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна нулю. Следовательно, в капиллярах малого круга кровообращения обмена жидкости не происходит.

Диффузионный механизм транскапиллярного обмена. Этот вид обмена осуществляется в результате разности концентраций веществ в капилляре и межклеточной жидкости. Это обеспечивает движение веществ по концентрационному градиенту. Такое движение возможно потому, что размеры молекул этих веществ меньше пор мембраны и межклеточных щелей. Жирорастворимые вещества проходят мембрану независимо от величины пор и щелей, растворяясь в ее липидном слое (например, эфиры, углекислый газ и др.).


Активный механизм обмена - осуществляется эндотелиальными клетками капилляров, которые при помощи транспортных систем их мембран переносят молекулярные вещества (гормоны, белки, биологически активные вещества) и ионы.

Пиноцитозный механизм обеспечивает транспорт через стенку капилляра крупных молекул и фрагментов частей клеток опосредованно через процессы эндо- и экзопиноцитоза.

Капиллярный кровоток и его особенности

Важным в функциональном отношении отделом сосудистой системы являются капилляры, относящиеся к обменным сосудам. Они обеспечивают газообмен, снабжение клеток питательными, пластическими веществами, и выведение продуктов метаболизма. Обмен происходит также в венулах.

В покое кровь циркулирует лишь в 25–35% всех капилляров. В регуляции капиллярного кровотока участвуют артериолы, метартериолы, венулы. Совокупность сосудов от артериол до венул называют терминальным (микроциркуляторным) руслом. Они составляют общую функциональную единицу.

Плотность капилляров в разных органах значительно варьирует. Большое количество их содержится в миокарде, мозге, печени, почках — до 2500–3000 капилляров на 1 мм2. Меньше в костной, жировой, соединительной тканях. Кровь соприкасается с очень большой поверхностью капилляров и в течение довольно длительного времени.

Диаметр капилляров составляет от 5 до 30 мкм.

Длина одного капилляра равна 0,5–1,1 мм. Общая поверхность всех капилляров составляет около 1000 м2. Общая площадь сечения всех капилляров большого круга от 8000 см2 до 11000 см2. В местах отхождения капилляров от артериол гладкомышечные клетки образуют прекапиллярные сфинктеры. В других участках капилляров таких элементов нет.

Стенка капилляров представляет собой полупроницаемую мембрану, тесно связанную функционально и морфологически с межклеточным веществом, то есть капилляры неотделимы от органов, они являются составной частью самих органов. Встречаются плоские, петлистые капилляры, они легко растягиваются, соответствуют диаметру эритроцитов, которые способны, проходя через капилляры, изменять свою форму.

Стенки капилляров состоят из 2-х оболочек: внутренней — эндотелиальной и наружной — базальной. В зависимости от ультраструктуры стенок капилляров их можно разделить на 3 типа:

1. Соматический тип — имеет непрерывную эндотелиальную и базальную оболочки, имеет большое количество мельчайших пор (4–5 нм). Легко пропускают воду и минеральные вещества. Встречаются в скелетной и гладкой мускулатуре, жировой и соединительной ткани, легких, коре мозга.


2. Висцеральный тип — имеет «окошки» (фенестры), с диаметром — 0,1 мкм. Часто прикрыты тончайшей мембраной. Встречаются в почках, пищеварительном канале, эндокринных железах.

3. Синусоидный тип — базальная мембрана частично отсутствует, эндотелиальная оболочка прерывиста, с большими интерстициальными просветами. Через них проходят жидкости, клетки крови, макромолекулы. Локализованы в костном мозге, печени, селезенке

Для функции капилляров большое значение имеют скорость кровотока в них, проницаемость стенок, величина гидростатического и онкотического давления, число перфузируемых капилляров. Средняя линейная скорость в капиллярах составляет 0,5–1 мм/с. Каждая клетка крови находится в капилляре приблизительно равно 1,0 с.

Гидростатическое давление в капиллярах зависит от сопротивления в артериях и артериолах. В капиллярах оно продолжает снижаться и составляет в артериальном конце 30–35 мм Hg, в венулярном конце 15–20 мм Hg.

Движение жидкости через стенку капилляров различных веществ, осуществляется путем диффузии, фильтрации и осмоса.

Диффузия имеет 2-сторонний характер, скорость очень высокая. Проходя через капилляр жидкость плазмы 40 раз, полностью обменивается с межклеточной жидкостью. Через общую обменную поверхность организма скорость диффузии приблизительно равна 60 л/мин, в сутки составляет в среднем 85000 л.

Скорость фильтрации в норме практически равна скорости реабсорбции. Лишь небольшая часть межклеточной жидкости поступает в лимфатические сосуды. Скорость фильтрации составляет 20 л/сутки, скорость реабсорбции — 18 л/сутки, 2 л/с жидкости оттекает по лимфатическим сосудам.

В артериальном конце капилляров эффективное фильтрационное давление равно 9 мм Hg. В венозном конце эффективное реабсорбционное давление равно 6 мм Hg. До настоящего времени сохраняет свое значение теория транскапиллярного обмена Старлинга. Особенности обусловливающие обмен жидкости между капиллярами и межклеточным пространством представлены в данной гипотезе.

На артериальном конце капилляра гидродинамическое давление крови (ГДК) составляет 35 мм Hg, гидродинамическое давление ткани (ГДТ) —1 мм Hg. Онкотическое давление крови (ОДК) составляет 24 мм Hg, онкотическое давление ткани (ОДТ) —2 мм Hg.

На венулярном конце эти величины представлены следующим образом:

ГДК — 15 мм Hg, ГДТ — 1 мм Hg.

ОДК — 24 мм Hg, ОДТ — 2 мм Hg.

Отсюда фильтрационное давление (ФД) будет равно:

ФД = (35 мм Hg + 2 мм Hg) — (1 мм Hg + 24 мм Hg) = 12 мм Hg.