Файл: Понятие двойного интеграла.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.02.2024

Просмотров: 21

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Пример 4

Построить область интегрирования и изменить порядок интегрирования


Это пример для самостоятельного решения. Пример не очень сложный, но обратите внимание, что порядок обхода изначально задан вторым способом! Что делать в подобных случаях? Во-первых, возникает трудность с чертежом, поскольку чертить график обратной функции наподобие  непривычно даже мне самому. Я рекомендую следующий порядок действий: сначала из  получаем «обычную» функцию (выражаем «игрек» через «икс»). Далее строим график этой «обычной» функции (всегда можно построить хотя бы поточечно). Аналогично поступаем с более простой линейной функцией: из  выражаем «игрек» и проводим прямую.

Анализируем исходные пределы интегрирования: входим слева в область через  и выходим через . При этом все дела происходят в «игрековой» полосе от –1 до 0. После того, как вы определили на чертеже область интегрирования, сменить порядок обхода не составит особого труда. Примерный образец оформления решения в конце урока.

Похожий пример я еще разберу подробнее чуть позже.

Даже если вы всё отлично поняли, пожалуйста, не торопитесь переходить непосредственно к вычислениям двойного интеграла. Порядок обхода – вещь коварная, и очень важно немного набить руку на данной задаче, тем более, я еще не всё рассмотрел!

В предыдущих четырёх примерах область интегрирования находилась целиком в 1-й, 2-й, 3-й и 4-й координатных четвертях. Всегда ли это так? Нет, естественно.

Пример 5

Изменить порядок интегрирования


Решение: Выполним чертёж, при этом, график функции  фактически представляет собой кубическую параболу, просто она «лежит на боку»:

Порядок обхода области, который соответствует повторным интегралам , обозначен стрелками. Обратите внимание, что в ходе выполнения чертежа прорисовалась еще одна ограниченная фигура (левее оси ординат). Поэтому следует быть внимательным при определении области интегрирования – за область можно ошибочно принять не ту фигуру.

Перейдем к обратным функциям:
 – нужная нам правая ветвь параболы;


Изменим порядок обхода области. Как вы помните, при втором способе обхода, область нужно сканировать лазерным лучом слева направо. Но тут наблюдается интересная вещь:



Как поступать в подобных случаях? В таких случаях следует разделить область интегрирования на две части и для каждой из частей составить свои повторные интегралы:

1) Если «игрек» изменяется от –1 до 0 (зеленая стрелка), то луч входит в область через кубическую параболу  и выходит через прямую  (красная стрелка). Поэтому порядок обхода области будет следующим:

И соответствующие повторные интегралы:


2) Если «игрек» изменяется от 0 до 1 (коричневая стрелка), то луч входит в область через ветвь параболы  и выходит через ту же прямую  (малиновая стрелка). Следовательно, порядок обхода области будет следующим:

И соответствующие повторные интегралы:


У определенных и кратных интегралов есть весьма удобное свойство аддитивности, то есть, их можно сложить, что в данном случае и следует сделать:
 – а вот и наш обход области вторым способом в виде суммы двух интегралов.

Ответ записываем так:


Какой порядок обхода выгоднее? Конечно тот, который был дан в условии задачи – вычислений будет в два раза меньше!

Пример 6

Изменить порядок интегрирования


Это пример для самостоятельного решения. В нём присутствуют полуокружности, разборки с которыми были подробно рассмотрены в Примере 3. Примерный образец оформления решения в конце урока.

А сейчас обещанная задача, когда изначально задан второй способ обхода области:

Пример 7

Изменить порядок интегрирования


Решение: Когда порядок обхода задан вторым способом, то перед построением чертежа целесообразно перейти к «обычным» функциям. В данном примере присутствуют два пациента для преобразования:  и .
С линейной функцией всё просто:

График функции  представляется собой параболу с претензией на каноничность.

Выразим «игрек» через «икс»:

Получаем две ветви параболы:  и . Какую из них выбрать? Проще всего сразу выполнить чертёж. И даже если вы крепко позабыли материал аналитической геометрии о параболе, то всё равно обе ветви можно построить поточечно:



Еще раз обращаю внимание на тот факт, что на данном чертеже получилось несколько плоских фигур, и очень важно выбрать нужную фигуру! В выборе искомой фигуры как раз помогут пределы интегрирования исходных интегралов:
, при этом не забывайте, что обратная функция  задаёт всю параболу.

Стрелочки, которыми обозначен обход фигуры, в точности соответствуют пределам интегрирования интегралов .

Довольно быстро вы научитесь проводить такой анализ мысленно и находить нужную область интегрирования.

Когда фигура найдена, заключительная часть решения, в общем-то, очень проста, меняем порядок обхода области:

Обратные функции уже найдены, и требуемый порядок обхода области:


Ответ:

Заключительный пример параграфа для самостоятельного решения:

Пример 8

Изменить порядок интегрирования


Полное решение и ответ в конце урока.
Как вычислить площадь плоской фигуры с помощью двойного интеграла?

Начинаем рассматривать собственно процесс вычисления двойного интеграла  и знакомиться с его геометрическим смыслом.

Двойной интеграл  численно равен площади плоской фигуры  (области интегрирования). Это простейший вид двойного интеграла, когда функция двух переменных равна единице: .

Сначала рассмотрим задачу в общем виде. Сейчас вы немало удивитесь, насколько всё действительно просто! Вычислим площадь плоской фигуры , ограниченной линиями . Для определённости считаем, что  на отрезке . Площадь данной фигуры численно равна:


Изобразим область  на чертеже:


Выберем первый способ обхода области:


Таким образом:


И сразу важный технический приём: повторные интегралы можно считать по отдельности. Сначала внутренний интеграл, затем – внешний интеграл. Данный способ настоятельно рекомендую начинающим в теме чайникам.

1) Вычислим внутренний интеграл, при этом интегрирование проводится по переменной «игрек»:


Неопределённый интеграл тут простейший, и далее используется банальная формула Ньютона-Лейбница, с той лишь разницей, что пределами интегрирования являются не числа, а функции. Сначала подставили в «игрек» (первообразную функцию) верхний предел, затем – нижний предел

2) Результат, полученный в первом пункте необходимо подставить во внешний интеграл:


Более компактная запись всего решения выглядит так:


Полученная формула  – это в точности рабочая формула для вычисления площади плоской фигуры с помощью «обычного» определённого интеграла! Смотрите урок Вычисление площади с помощью определенного интеграла, там она на каждом шагу!

То есть, задача вычисления площади с помощью двойного интеграла мало чем отличается от задачи нахождения площади с помощью определённого интеграла! Фактически это одно и тоже!

Соответственно, никаких трудностей возникнуть не должно! Я рассмотрю не очень много примеров, так как вы, по сути, неоднократно сталкивались с данной задачей.

Пример 9

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями ,

Решение: Изобразим область  на чертеже:


Площадь фигуры вычислим с помощью двойного интеграла по формуле:


Выберем следующий порядок  обхода области:

Здесь и далее я не буду останавливаться на том, как выполнять обход области, поскольку в первом параграфе были приведены очень подробные разъяснения.

Таким образом:


Как я уже отмечал, начинающим лучше вычислять повторные интегралы по отдельности, этого же метода буду придерживаться и я:

1) Сначала с помощью формулы Ньютона-Лейбница разбираемся с внутренним интегралом:



2) Результат, полученный на первом шаге, подставляем во внешний интеграл:


Пункт 2 – фактически нахождение площади плоской фигуры с помощью определённого интеграла.

Ответ:

Вот такая вот глупая и наивная задача.

Любопытный пример для самостоятельного решения:

Пример 10

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями , ,

Примерный образец чистового оформления решения в конце урока.

В Примерах 9-10 значительно выгоднее использовать первый способ обхода области, любознательные читатели, кстати, могут изменить порядок обхода и вычислить площади вторым способом. Если не допустите ошибку, то, естественно, получатся те же самые значения площадей.

Но в ряде случаев более эффективен второй способ обхода области, и в заключение курса молодого ботана рассмотрим ещё пару примеров на эту тему:

Пример 11

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями ,

Решение: нас с нетерпением ждут две параболы, которые лежат на боку.

Как проще всего сделать чертёж?

Представим параболу  в виде двух функций:
 – верхняя ветвь и  – нижняя ветвь.

Аналогично, представим параболу  в виде верхней  и нижней  ветвей.

Далее рулит поточечное построение графиков, в результате чего получается вот такая причудливая фигура:


Площадь фигуры вычислим с помощью двойного интеграла по формуле:


Что будет, если мы выберем первый способ обхода области? Во-первых, данную область придётся разделить на две части. А во-вторых, мы будем наблюдать сию печальную картину: . Интегралы, конечно, не сверхсложного уровня, но… существует старая математическая присказка: кто с корнями дружен, тому зачёт не нужен.

Поэтому из недоразумения, которое дано в условии, выразим обратные функции:

Обратные функции в данном примере обладают тем преимуществом, что задают сразу всю параболу целиком без всяких там