Файл: Постников В.И. Исследование и контроль износа машин методом поверхностной активации.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 27.06.2024

Просмотров: 75

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Г Л А В А 2

ИССЛЕДОВАНИЕ И ОТРАБОТКА МЕТОДА В УСЛОВИЯХ ЛАБОРАТОРНЫХ И СТЕНДОВЫХ ИСПЫТАНИЙ

ВВЕДЕНИЕ

Результаты теоретических и экспериментальных исследова­ ний потребовали решения важнейшего вопроса, связанного с распределением радиоактивных изотопов по глубине в зависи­ мости от таких факторов: вид радиоактивных изотопов, энергия их излучения, условия активации (в вакууме, на воздухе, ак­ тивация под углом) и др.

Как

видно из приведенных выше графиков

(см.

рис.

3,.

6, 8), в

процессе активации происходит

изменение

характера

кривой,

выраженной

зависимостью

100 = f(u).

Изменение

указанной зависимости

связано с основными

параметрами

и

условиями активации, хотя для конкретных условий характер кривой сохраняется.

Активация данного вида частицами при постоянной энергии вне зависимости от интенсивности дает стабильное распределе­

ние по глубине и практически

для стали

и чугуна

характер

кривой одинаковый.

 

 

 

Изменение энергии, которое

связано с

выводом

пучка на

воздух, .или вида частиц ведет

к изменению характера кривой..

Исключить влияние изменения энергий частиц, а также любых других факторов, которые могли бы внести дополнительные погрешности и учесть которые не удается в процессе измерения скорости счета, можно путем моделирования на образцах.

Для получения сопоставимых данных облучать образцы не­ обходимо в таких же условиях, как и исследуемые детали.

Разработка метода моделирования на образцах и проведе­ ние большого числа исследований по изучению результатов мо­ делирования позволили использовать разработанный метод для получения достоверных данных при исследовании износа.

Исследование по моделированию износа на образцах про­ изводилось в процессе отработки метода, а также непосредст­ венно перед исследованием износа деталей машин и механиз­ мов или во время исследования.

31


§ 1. ИССЛЕДОВАНИЕ ИЗНОСА НА ОБРАЗЦАХ

Исследование износа на образцах преследует три основные цели: 1) определение результатов активации данного металла различными частицами; 2) определение применимости метода для исследования износа данного металла в конкретных усло-

N

виях работы детали; 3) получение зависимости вида — -100 =

= f(b), которую используют для исследования износа деталей машин и механизмов без их остановки и разборки.

Если моделирование на образцах, предназначенных для определения применимости метода, можно вести в произволь­ ных условиях, когда необходимо определить влияние изменения химического состава материала, то при моделировании в усло­ виях, соответствующих условиям работы детали, необходимо решать конкретные задачи: выбирать вид частиц и энергии их излучений; определять влияние на точностные показатели гео­ метрических условий исследования и т. д.

Рассмотрим результаты моделирования, проведенного для решения указанных задач.

1. Определение применимости метода к исследованию износа данного материала

Прежде чем приступить к исследованию износа деталей машин и механизмов в цеховых испытаниях, проводили моде­ лирование на образцах, активируемых на циклотроне.

Моделирование, как правило, проводили после теоретиче­ ских исследований, связанных с применимостью металла дан­ ного химического состава к активации его заряженными ча­ стицами.

Подтверждение теоретических исследований служило осно­ ванием для дальнейших работ по моделированию в условиях, приближенных к условиям работы данной детали, и получен­ ные данные использовали для обработки результатов исследо­ вания.

Характеристика процесса моделирования. Основные работы

по

исследованию в процессе моделирования на образцах

вели

на

различных видах чугунов, сталей, твердых сплавов,

бронз

и

некоторых пластмассах, активированных а-частидами,

дей­

тронами и протонами различных энергий. Всего исследовали более 1000 образцов.

Как уже указывалось, на рис. 2 представлена схема при­ менения аппаратуры при моделировании на образцах в усло­ виях, обеспечивающих защиту от фона (эту схему мы исполь­ зовали и в дальнейших работах).

В указанном случае приведена только одна из схем моде­ лирования, исследуемых в настоящей работе, более подробно аппаратура рассмотрена в гл. 5.

.32


Регистрация излучения в указанных условиях позволяет судить о суммарной активности всех образующихся радиоак­ тивных изотопов, в том числе и (3-излучателей. Исключить влияние на скорость счета р-излучения и у-излучения малых энергий (до 0,1 Мэв) можно, установив соответствующие экра­ ны между источником излучения и детектором, что обычно и делают при моделировании в условиях работы деталей машин

имеханизмов.

Вгл. 1 достаточно подробно рассмотрено исследование ак­ тивации твердых сплавов, поэтому указанные металлы в на­ стоящей главе мы не рассматриваем.

Несколько более подробно остановимся на различных видах чугунов и сталей, активированных дейтронами и нашедших наиболее широкое применение в исследованиях.

2. Моделирование на различных металлах

Исследование активации с точки зрения распределения по глубине радиоактивного слоя и характера полученной зависи­ мости — =/(Д6) вели на различных видах чугунов, сталей и

бронз при активации их дейтронами. Моделирование на пласт­ массах вели применительно к деталям, используемым в стен­ довых испытаниях. В работе [6] рассмотрена зависимость изме­ нения относительной скорости счета от глубины истирания об­

разцов из

легированного

чугуна * при моделировании

износа

без учета условий работы

деталей.

 

 

Как видно из результатов

моделирования

(представлены

только 3 образца из 17, на которых проводили

моделирование),

характер

полученных кривых

полностью совпадает,

несмотря

на то что образцы были облучены в различное время и имели

активность, отличающуюся примерно в три раза

и

находя­

щуюся в пределах 2000—6000 имп/мин.

 

 

 

 

 

 

В том случае, если измеряют через какой-либо экран, т. е.

через корпус или другие поглощающие экраны,

характер

кри­

вой остается прежним, но

несколько

меняется

 

соотношение

между относительной скоростью счета и глубиной износа.

 

Результаты исследований

изменения

относительной

скоро­

сти счета при истирании образцов и измерении

излучения

че­

рез алюминиевую

пластинку

толщиной

2 мм

и

 

слой

чугуна

толщиной 52 мм

(толщина

стенки

цилиндровой

втулки

двига­

теля 5ДКРН-74/160) рассмотрены

в работах

[3,

6,

7].

 

 

Алюминиевая пластинка поглощает в основном только Р-излучение, слой чугуна поглощает частично и у-излучение,

вчастности у-кванты Со5 7 .

*Образцы изготовлены из материала втулки двигателя 5ДКРН-74/160. Условное обозначение — легированный чугун А.

3 Зак. 289

33


Полученное смещение кривой подтверждает необходимость моделирования в условиях, соответствующих условиям рабо­ ты исследуемой детали.

Аналогичные исследования проведены на образцах других марок легированного чугуна и на образцах из серого чугуна (рис. 13).

Как видно из полученных зависимостей, сохраняется харак­ тер кривой, которая изменяется с применением экранов, вне­ сением поправки на распад и использованием различного чис­ ла и типов счетчиков.

^100

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

-

 

 

 

 

I§

40

-

v >

 

 

 

-

 

 

 

 

I

20 -

 

 

 

 

 

 

 

1

1

1

1

'

О

40

80

120

160

200 240 280

Величина снятого слоя,мкм

Рис. 13. Изменение относительной скорости счета

,,

при истирании образцов

из

серого чугуна

и при

измерении в различных

условиях (экран из чугу-

,

на толщиной Ш мм), N=4200 имп/мин:

 

i '•

—с учетом распада;

 

—без учета

распа­

 

да; О — без экрана; •

—с экианом.

 

Моделирование на образцах из стали. Как видно из рис. 14, характер кривых и распределение по глубине на всех трех об­ разцах полностью совпадают, так. как условия измерения были во всех случаях одинаковыми.

Таким образом, изменение химического состава стальных образцов (№ 27 —Ст. 3, № 34 —сталь 38ХНЮА и № 38 — сталь 2X13) не оказывает влияния на распределение радиоак­ тивных изотопов по глубине.

Моделирование на образцах из бронзы. Моделирование на образцах из бронзы вели для двух марок бронз: ВБр-3 и БрБ-2. Химический состав ВБр-3 в процентах указан ниже.

Медь

основа

Примеси,'всего

0,031 ,

Никель

16,0—18,0

Свинец

0,002

Алюминий

3,0—3,5

Фосфор

0,002

Железо

1,2—1,6

Сера

0,01

Марганец

0,4—1,0

Висмут

0,002

Кремний

0,6—1,0

Сурьма

0,005

Хром

0,8—1,3

Мышьяк

0,01

34


40

80

120

160

200

240 0

40

80

120

160

200

240 0

40

80

120

160

200

240

Величина снятого слоя^ мкм

100

I so

I 60

}II 40

I 20

1

I ?

-

43 о

_

_

-

 

I

I

г

I

I

I

20

40

60

80

100

120

140 . 160-

Рис. 14. Изменение относительной скорости счета при истирании сталь­ ных образцов:

а — Ст. 3,

Л/о=6080 имп/мин;

б — сталь

38XHIOA, W0=4460 имп/мин;

а — сталь

2X13. /Vo™2680 имп/мин;

О —без

экрана;

© — с чугунным экраном

толщиной

10 ми.

 

Рис.

15.

Изменение

относительной

a

скорости

счета от величины

снятого

слоя

при истирании

образцов

из

i

бронзы (ВБр-3, БрБ-2)

при

актива­

180 200

ции

дейтронами с энергией 13,4

Мэв,

Величина снятого слоя^мт