Файл: Тарко Л.М. Переходные процессы в гидравлических механизмах.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 11.07.2024
Просмотров: 137
Скачиваний: 0
В приведенных здесь выражениях ап представляет собой ко рень трансцендентного уравнения (106).
Изменение давления в гидросистеме. Преобразованная функ ция давления сечения трубопровода, примыкающего к источни ку питания, имеет вид
Q ( _ l , r ) = 4 £ - .
Переходя к оригиналам, получаем:
оо
q(— 1,т) = /С0 (1 — 2 A^COSCO„T) .
л=1
В соответствии с приведенным равенством давление у насо са при переходном процессе изменяется по закону
00
р ( _ U ) = J - ( Я - R"У| А-оНcos kn .
Для сечения трубопровода, примыкающего к гидроцилиндру, имеем следующую преобразованную функцию давления:
Q (0, г) = K v C h r
Отыскивая ее оригинал, получаем величину безразмерного давления'
q (0, %) = Ки(А — ^ AvR cos сол т) ,
л=1
а размерное давление у цилиндра изменяется по закону
|
|
|
со |
|
|
р(0, t) = |
-±f(R-R"yy^AvRzosknt |
|
|
|
|
|
л=1 |
|
Выведенные зависимости показывают, что амплитуда коле |
||||
баний |
давления |
при переходном |
процессе у источника |
питания |
выше, |
чем на |
противоположном |
конце трубопровода, |
у входа |
в гидроцилиндр. |
|
|
Колебания скорости жидкости в трубопроводе. Будем харак теризовать движение жидкости в гидравлической системе ско ростью в сечении напорного трубопровода у входа в гидравли
ческий цилиндр. Преобразованная |
функция скорости жидкости |
в этом сечении имеет вид |
|
U(0,r) = — |
K v S h r , |
ее оригинал равен |
Ро |
|
159
и(О, т) = — [iKv У Av s m ю " sin со,; т.
(Од
п = 1
В соответствии с этим определяем закон изменения скоро сти втекания рабочей жидкости в гидроцнлиндр при переходном
процессе, вызванном |
изменением нагрузки. |
|
||
v(0,t)=v0(l- |
|Ж„ \ |
А 0 |
s i n M " |
sin К t) . |
|
\ |
|
(On |
J |
Следует заметить, |
что выведенные |
переходные функции в |
||
безразмерном виде совпадают |
по форме с |
соответствующими |
переходными функциями, относящимися к переходному процес су, вызванному включением насоса постоянной производитель ности, в той их части, которая включает коэффициент Kv. Это объясняется совпадением в определенной части соответствую щих преобразованных функций для этих видов переходного про цесса при выбранных в настоящей работе безразмерных пере менных. Разумеется, указанное совпадение является формаль ным, и в размерном виде соответствующие расчетные зависимо сти существенно отличаются друг от друга. Однако отмеченное обстоятельство создает большие удобства при выводе расчетных зависимостей, а также при их использовании для проведения вычислений. Важным при этом является то обстоятельство, что в зависимостях, относящихся к различным видам переходного процесса, содержатся одинаковые безразмерные величины, ко торые подсчитываются один раз и в дальнейшем могут быть использованы многократно при расчете движения поршня, ко лебаний давления и скорости жидкости при различных видах переходного процесса.
Как было отмечено выше, колебания протекают на частотах, определяемых при помощи трансцендентного уравнения (106) и с использованием формул (110) — (116).
Для определения длительности переходного процесса, выз ванного изменением нагрузки в рассматриваемой системе гид ропривода с источником питания постоянной производительно
сти, служит |
зависимость (120). |
Это объясняется |
совпадением |
знаменателей |
рассматриваемых |
преобразованных |
функций и |
преобразованных функций, относящихся к случаю переходного процесса, вызываемого пуском источника питания постоянной
производительности. |
|
|
|
|
|
|
|
Приведем пример расчета гидросистемы с использовавшими |
|||||
ся |
выше данными: у=\8,9 t—0,616 |
(1—cos 82 /) ; р(—/, t) = |
||||
= |
83—82,7 cos 82/, /?(0, /) =83—71,8 |
cos 82/; |
u(0, 0=294 |
— |
||
—350 sin 82/. В этом |
расчете |
принято У? = 14 660 кгс. |
При |
|||
вдвое более коротком |
напорном |
трубопроводе |
получаем: |
у= |
160
О 0.2 О.Ч 0.6 |
0.8 |
р |
0 |
0.1 |
0,2 0,3 |
0,4 |
ju |
|
Рис. 57. Диаграмма 6Р= |
|
Рис. |
58. |
Диаграмма |
б„ = |
|||
=const |
|
|
|
|
|
=const |
|
|
= 18,9/ — 0,487(1— cos |
94/); |
/?(—/, |
/) = |
83 — 77,8 |
cos 94 /; |
|||
p(0, /) =83—74,4 cos |
94/; »(0, /) =294—195 sin 94/. |
|
|
|||||
Результаты расчета |
показывают, |
что амплитуда |
колебаний |
поршня при данном виде переходного процесса меньше для механизма с источником питания постоянной производительно сти. Для такого привода частота колебаний ниже. Амплитуда колебаний давления выше у источника питания, чем у цилин дра, что связано с подвижностью поршня. Укорочение напор ного трубопровода приводит к снижению амплитуды колебаний поршня при переходном процессе, что способствует повышению точности работы механизма.
О системах с короткими трубами. Для систем с короткими трубопроводами и, соответственно, малыми \х и f> расчет пере ходных процессов проводится проще ввиду малой величины амплитуд колебаний на обертонах. Б расчетных зависимостях часто можно ограничиться использованием лишь первого члена ряда, относящегося к основной гармонике. Будем характеризо вать степень влияния обертонов, или степень распределенности параметров системы, отношением амплитуд колебаний на пер-
.- |
„ |
с |
/1р(С0о) |
s |
вом обертоне |
и основной |
гармонике |
ор = —-—— |
и о„ = |
|
|
|
Ар{щ) |
|
161
= |
ц "и ю |
. На рис. 57 и 58 представлены |
диаграммы |
в координа |
|||||
тах \х и |
т>, на которых показаны |
кривые с |
постоянными вели |
||||||
чинами |
б р |
и би, равными 0,2; 0,1; 0,05. |
Графики |
показывают, |
|||||
что б р и би |
уменьшаются с уменьшением |
р, и |
Кривые 6р = |
0,05 |
|||||
и |
б„ = 0,05 ограничивают область, |
в |
которой |
с достаточной |
для |
||||
технических |
расчетов точностью |
до |
5% |
можно |
пренебрегать |
обертонами и ограничиваться в расчетах учетом первого члена ряда в соответствующих формулах. Такие гидросистемы с ко роткими трубопроводами близки к системам с сосредоточенны ми параметрами и к ним применима изложенная в книге мето дика расчета. Упрощение расчета достигается применением приближенных формул для определения величин coi, исключаю щих необходимость трудоемкого решения трансцендентных уравнении
|
|
|
Л И Т Е Р А Т У Р А |
|
|
|
|
1. |
А н а н ь е в |
И. В., Т и м о ф е е в |
П. Г. Колебания |
упругих систем в |
|||
авиационных конструкциях и их демпфирование. М., |
«Машиностроение», |
||||||
1965, 527 с. |
|
|
|
|
|
|
|
2. |
А р о н о в и ч |
Г. В., К а р т в е л п ш в и л и Н. А., |
Л ю б и м ц е в |
Н. К. |
|||
Гидравлический |
удар и уравнительные |
резервуары. М., |
«Наука», 1968. |
|
|||
3. |
Б а р а н о в |
В. Н., З а х а р о в |
Ю. Е. Электрогндравлнческпе и |
гид |
|||
равлические вибрационные механизмы. М., «Машиностроение», |
1966, 244 с. |
||||||
4. |
Б а ш т а |
Т. М. Машиностроительная гидравлика. М., |
Машгиз, |
1963, |
|||
696 с. |
|
|
|
|
|
|
|
5. |
Б а ш т а |
Т. М. Гидравлические |
приводы летательных |
аппаратов, М., |
|||
«Машиностроение», |
1967, 496 с. |
|
|
|
|
6. Б а ш т а Т. М., |
З а н ч е н к о |
I I . 3., Е р м а к о в |
в и ч Е. М. Объемные |
гидравлические |
приводы. М., |
1969, 627 с. |
|
|
В. В., X а и м о- «Машиностроение»,
7. В е л и к |
Н. П. К расчету собственных частот колебаний в сложных |
трубопроводах. |
«Известия вузов. Авиационная техника», 1965, N° 2, с. 3—8. |
8. Б е л п к |
Н. П. К расчету волновых процессов в сложных трубопрово |
дах при периодическом изменении расхода. «Известия вузов. Авиационная
техника». 1965, № 3, с. 3—11. |
|
|
|
|
|
|
|||
9. Б о ч а р о в |
10. А., П р о к о ф ь е в В. |
Н. |
Гидропривод |
кузнечно- |
|||||
прессовых машин М., «Высшая школа», |
1969, 273 с. |
|
|
|
|||||
10. Б р о и Л. С , |
Т а р т а к о в с к и й Ж- Э. Гидравлический |
привод |
аг |
||||||
регатных |
станков |
и |
автоматических |
линий. |
М., |
«Машиностроение», |
1967, |
||
356 с. |
|
|
|
|
|
|
|
|
|
11. |
Г а м ы н н н |
Н. С. Основы |
следящего |
гидравлического |
привода. М., |
||||
Оборонгиз, 1962. |
|
|
|
|
|
|
|
|
|
12. |
Г а н и ч е в |
А. И. Определение |
собственных частот колебаний |
сжи |
маемой жидкости в сложном трубопроводе. «Известия вузов. Машинострое ние», 1966, № 10, с. 73—77.
13. Г е л ь м а н А. С , М о р о з о в а Н. И., Ф р о л о в К- В., Ф у р м а н Ф. А. Нестационарные колебания гидравлических линий. «Машиноведение»,
1967, № |
1, с. 79—85. |
14. |
Г е р ц Е. В., Л е в и т с к и н Н. И., Ц у х а н о в а Е. А. Теория пнев |
матических и гидравлических механизмов машин-автоматов. Сб. Института
машиновеедння. «Теория машин и механизмов». Вып. 107—108, «Наука» |
1965, |
с. 54—59. |
|
15. Е р м а к о в В. В. Гидравлический привод металлорежущих станков. |
|
М., Машгиз, 1963, 324 с. |
|
16. Ж у к о в с к и й Н. Е. О гидравлическом ударе в водопроводных |
тру |
бах. Полное собр. соч. Т. V I I , М., ОНТИ, 1937, 412 с. |
|
163