ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 19.07.2024
Просмотров: 418
Скачиваний: 3
СОДЕРЖАНИЕ
Глава 2. Первичные преобразователи
Глава 3. Усилители и стабилизаторы
Глава 4. Переключающие устройства и распределители
Глава 5. Задающие и исполнительные устройства
Глава 6. Общие сведения об измерении и контроле
Глава 8. Контроль давления и разрежения
Глава 9. Контроль расхода, количества и уровня
Глава 12. Автоматическая блокировка и защита в системах управления
Глава 13. Системы автоматического контроля и сигнализации
Глава 14. Системы автоматического
Глава 15. Объекты регулирования и их свойства
Глава 17. Конструкции и характеристики регуляторов
Глава 18. Общая характеристика
Глава 19. Математическое и программное обеспечение микроЭвм
Глава 20. Внешние устройства микроЭвм
Глава 21. Применение микропроцессорных систем
Глава 23. Конструкции промышленных роботов
Глава 25. Роботизация промышленного производства
В процессе работы проводят ряд замеров.
Порядок выполнения работы. 1. Ознакомиться с устройством оптического и радиационного пирометров и изучить принцип их действия. 2. Собрать схему для поверки одного из пирометров (по указанию преподавателя). Поместить металлическую пластину в муфельную печь и включить нагреватели печи. 3. Провести четыре—шесть замеров в диапазоне 800... 1200°С с помощью оптического или радиационного пирометра. Одновременно с этим контролировать температуру в комплекте с электронным автоматическим потенциометром.
Содержание отчета аналогично лабораторной работе 3.
Глава 8. Контроль давления и разрежения
-
ОБЩИЕ СВЕДЕНИЯ И КЛАССИФИКАЦИЯ ПРИБОРОВ
Для нормальной работы топливных термических и плавильных печей необходимо контролировать давление топлива и воздуха как после регулирующих органов, так и перед горелками. Кроме того, необходимо поддерживать постоянное давление в рабочем пространстве печи и обеспечивать определенную тягу, создаваемую дымовой трубой или дымососом. При работе вакуумных печей контроль разрежения обеспечивает качество и стабильность процесса.
Согласно молекулярно-кинетической теории под давлением понимается сила, с которой молекулы вещества в термодинамической системе воздействуют на единицу ограничивающей ее поверхности. При определении давления принято различать атмосферное, избыточное, абсолютное и вакуумметрическое давление.
Атмосферное давление Ратм — давление, оказываемое атмосферой на все предметы, находящиеся в ней. Так как атмосферное давление измеряется барометрами, то его принято называть барометрическим.
Избыточное давление Рнаб — давление в каком-либо замкнутом объеме сверх атмосферного. Избыточное давление измеряют в основном манометрами, поэтому чаще его называют манометрическим.
Абсолютное давление ЯаСс — сумма атмосферного и избыточного давления, т. е. Яабс = Яатм + Раяб.
Под вакуумом (разрежением) понимают состояние газа, при котором его давление меньше атмосферного. Вакуумметрическое давление Явак — это разность между атмосферным давлением и абсолютным давлением внутри' вакуумметрической системы.
В Международной системе единиц СИ за единицу давления принят один паскаль — действие силы в один ньютон (1 Н) на площадь в один квадратный метр (ма). Но эта единица очень мала, поэтому для измерения средних и высоких давлений целесообразно применять кратные единицы: килопаскаль (кПа) и мегацаскаль (МПа). Наряду с паскалем при контроле давления в металлургической промышленности пока еще используется ряд внесистемных единиц давления. Например, техническая атмосфера — 1 кгс/сма = = 9,8.104 Па. Атмосфера — величина довольно большая, поэтому на практике для измерения малых давлений применяют миллиметр ртутного столба (мм рт. ст.) и миллиметр водяного столба (мм вод. ст.). Техническая атмосфера равна давлению ртути высотой 735,56 мм или столба воды высотой 10 м.
При измерении давления в движущейся среде различают статическое и динамическое давление. Статическое давление Рст зависит от запаса потенциальной энергии движущейся среды и определяется статическим напором. Динамическое давление Рдин определяется скоростью движения среды. Полное давление Рп движущейся среды слагается из статического и динамического давлений.В дальнейшем под термином давление будет подразумеваться статическое давление.
Приборы для измерения давления и разрежения классифицируют по принципу действия и по характеру измеряемой величины. Согласно первой классификации все приборы для измерения давления подразделяют на четыре группы: жидкостные, деформационные, грузопоршневые и электрические.
В жидкостных приборах измеряемое давление уравновешивается давлением столба жидкости, высота которого определяет значение давления.
Деформационные приборы — это Такие приборы, в которых измеряемое давление определяется значением деформации упругих элементов различной конструкции или значением развиваемой ими силы.
В грузопоршневых приборах измеряемое давление уравновешивается давлением, создаваемым массой поршня или дополнительного груза.
Работа электрических приборов основана на изменении электрических свойств определенных материалов при воздействии на них внешнего давления.
По характеру измеряемой величины приборы для контроля давления или разрежения подразделяют на следующие виды: барометры (для измерения атмосферного давления), манометры (для измерения избыточного давления), дифференциальные манометры (для измерения разности давления); вакуумметры (для измерения разрежения); моновакуумметры (измеряющие небольшое избыточное давление или вакуум).
Манометры, вакуумметры и дифференциальные манометры, предназначенные для измерения небольшого давления, разрежения и разности давления газовых сред (до 40 кПа), называют на- поромерами, тягомерами и тягонапоромерами (соответственно).
-
МАНОМЕТРЫ
Жидкостные манометры отличаются простотой устройства при относительно высокой точности измерения. Их действие основано на уравновешивании внешнего давления столбом затворной (рабочей) жидкости, в качестве которой используют ртуть, воду, трансформаторное масло иди спирт.
и-образный манометр (рис. 64, а) представляет собой стеклянную трубку, изогнутую в виде буквы и и заполненную затворной жидкостью так, чтобы уровень жидкости в обоих коленах находился Против нулевых отметок. Один конец трубки подсоединяется к объему, в котором необходимо измерить давление Р, а второй сообщается с атмосферой. Отсчет производится по шкале. Разность уровней Н определяет избыточное давление Р и плотность жидкости “у.
Верхний предел измерения И-образного манометра составляет 10 кПа. При этом погрешность не превышает 2 %.
и-образные манометры используют для измерения разрежения или разности давлений. Основным недостатком и-образных манометров является необходимость снятия при каждом замере двух отсчетов. Этот недостаток частично устранен в чашечном манометре (рис. 64, б), состоящем из сосудов разного диаметра. Под действием измеряемого давления Р уровень жидкости в чашке
Рис.
64, Жидкостные манометры:
а
— и-обраэный; б
— чашечный однотрубный; в — чашечный
с наклонной трубкой
Рис. 65. Чувствительные элементы деформационных манометров:
а — одновитковвя пружнна; б — многовитковвя пружина; в — упругая мембрана; г — мягкая мембрана (пружинно-мембранный элемент); д — одинарная мембранная коробка; е — двойная мембранная коробка; ж — сильфон; а — пружинио-сильфонный элемент
снижается на высоту /г2, значительно меньшую высоты (диаметр чашки в несколько раз больше диаметра трубки). Разность уровней Н в чашечном манометре в основном определяется перемещением мениска в тонкой трубке, так как > /г2.
Чашечные манометры имеют верхний предел измерения ЮкПа, а погрешность измерения составляет 0,4 ... 0,25 %.
При точных измерениях небольших избыточных давлений и разрежений применяют специальные чашечные манометры с наклонной трубкой (рис. 64, в). Изменение угла наклона а трубки позволяет при малой высоте получить более точное измерение.
Жидкостные стеклянные манометры не приспособлены для записи показаний и их дистанционной передачи. Поэтому их используют, в основном, для местного контроля, а также для поверки и градуировки манометров других систем.
Работа деформационных манометров основана на уравновешивании давления среды силами, возникающими при упругой деформации специальных элементов. Деформация в виде линейных или угловых перемещений передается показывающему или регистрирующему узлу прибора. Одновременно она может быть преобразована в электрический или пневматический сигнал для дистанционной его передачи.
В качестве чувствительного элемента в этих манометрах (рис. 65) используют одно- и многовитковые пружины, упругие мембраны и сильфоны.
В одно- и многовитковых пружинных манометрах (рис. 65, а, б) измеряемое давление подается во внутреннюю полость через закрепленный неподвижный конец. Второй конец пружины запаивается и соединяется с показывающей системой. Пружины изготовляют из латуни и других медных сплавов, а дл'я высоких давлений — из хромоникелевых сталей. Поперечное сечение пружины представляет собой эллипс, большая ось которого перпендикулярна к плоскости витка пружины.
При повышении давления поперечное сечение пружины «округляется», т. е. увеличивается малая ось эллипса, а угол закручивания пружины уменьшается. Шкала пружинного манометра равномерная, так как пружина работает в зоне пропорциональности между деформацией и напряжением. Перемещение свободного конца одновитковой пружины не превышает 5 ... 8 мм. Поэтому для увеличения угла поворота стрелки в манометрах применяют передаточный механизм: рычажный или зубчатый.
Манометры с одновитковой пружиной изготовляют образцовыми, контрольными и техническими: классы точности — от 0,2 до 4,0; пределы измерений 100 кПа ... 1000 МПа.
Многовитковая трубчатая пружина представляет собой последовательное соединение нескольких одновитковых пружин, благодаря чему она имеет сравнительно большое перемещение свободного конца и развивает значительные усилия. Поэтому многовит- ковыепружины широко применяют в регистрирующих манометрах. Последние выпускают с верхним пределом измерения до 160 МПа.
В мембранных манометрах чувствительным элементом являются упругая мембрана (рис. 65, в), мягкая мембрана, например резиновая с дополнительной пружиной (рис. 65, г), мембранные
коробки: одинарные (рис. 65, д) и двойные (рис. 65, е).
Мембранный манометр типа ММ (рис. 66) предназначен для измерения давления до 2,5 МПа.
В манометре под действием измеряемого давления мембрана 2, находящаяся в коробке 1, прогибается, перемещая шток 3, соединенный через рычаг 4 с зубчатым сектором 6. Зубчатый сектор находится в зацеплении с зубчатым колесом 8, которое через пружину, 9 соединено со стрелкой 7, перемещающейся по шкале 5. Снизу у манометра предусмотрен резьбовой штуцер для установки манометра на объект измерения.
Мембранные манометры применяют, как правило, для измерения небольших давлений. Недостатками мембранных манометров являются малая чув- Рис 66 МембРанный мано- ствительность системы, трудность регу- метр