Файл: Иноземцев, Г. Г. Незатылованные шлицевые червячные фрезы-1.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 17.10.2024

Просмотров: 91

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Обратный комптон-эффект. Рассмотрим теорию классического рассеяния электромагнитного излучения на ультрарелятивистских электронах*.

Основную особенность обратного комптон-эффекта — резкое увеличение частоты излучения в процессе рассеяния — легко объяс­ нить, исходя из кинематики рассеяния. Предположим, что на элект­ рон, движущийся со скоростью v, близкой к скорости света, дейст­ вует импульс электрического поля. Продолжительность импульса равна At. Под действием поля электрон получает ускорение и излу­ чает. Продолжительность импульса излучения At', регистрируемая неподвижным наблюдателем, короче длительности импульса поля из-за допплеровского сокращения:

At' ~ At (1 vie).

(2.54)

Если перейти к частотам, получим соотношение

 

с о ' ~ ( 1 / Д Г ) ~ й ) Г | »со .

(2.55)

Рассчитаем основные характеристики обратного комптон-эф- фекта в рамках классической электродинамики. Энергетические по­ тери электрона, движущегося со скоростью v в плоской волне с на­ правлением распространения п, равны

dEe

(1vn/c)2

/ r , r c ,

— 7 7 = c a r w r - ]

77T'

( 2 ' 5 6

где wr — плотность энергии излучения в плоской волне. В поле изотропного излучения энергетические потери определяются усред­ ненным по направлениям вектора п выражением (2.56)

dEe

1 + v2/3c2

,„ , . .

^f-=caTwr

/

' .

(2.57

dt

1t>2

/c2

 

Для ультрарелятивистских электронов в изотропном поле излуче­ ния энергетические потери равны

—dEjdt=

~coTwrTl

= l,0-10-2 5 ay,£f эв/сек.

(2.58)

Время жизни ультрарелятивистских электронов относительно энер­ гетических потерь на обратный комптон-эффект быстро падает с увеличением энергии электрона:

,

Ее

 

3 ( т с 2 ) 2

 

1,0-1025

сек.

/ 0

_ п .

tc=

 

— = —-—— = —'•

Ее

 

(2.59)

 

—dEe/dt

4ссгТ wr

Ее

wr

 

 

 

Например, время жизни электронов с энергией порядка 100 Мэв относительно энергетических потерь на реликтовом излучении (с плотностью энергии, равной 0,25 эв/см3, см. § 1.4) сравнимо с хаб-

* При очень высоких энергиях электронов квантовые поправки к клас­ сической теории обратного комптон-эффекта становятся существенными. Этот вопрос рассмотрен в § 2.5.

79


бловским возрастом Вселенной (tH

~ 1/Я0 ~ 1010 лет), в то время

как электроны с энергией, большей

10 Гэв, теряют свою энергию за

время, меньшее времени удержания космических лучей в магнитном поле Галактики (tCT ~ 107 лет, см. также гл. 5).

Используя условие сохранения числа фотонов в процессе рассея­ ния, записываем соотношение между средними энергиями первич­ ных и рассеянных фотонов:

<s v> =

( — dEeidt)

^ 2 щ

<е>

cwr стт

 

или

 

 

<е;> = 5 , Ы 0 - 1 2 < е > £ ! эв.

(2.61)

Аналогия между свойствами синхротронного излучения и обрат­ ного комптон-эффекта очевидна [сравним соотношения (2.17) и (2.58); (2.22) и (2.61)]. Физическая причина этой аналогии проста: и синхротронное излучение, и рассеянное на быстрых электронах обрат­ ное комптоновское излучение генерируются при колебаниях ульт­ рарелятивистских электронов во внешних электромагнитных полях. Формальная причина аналогии — это возможность трактовки син­ хротронного излучения как обратного комптон-эффекта виртуаль­ ных гирофотонов магнитного поля с частотой со^ на ультрареляти­ вистских электронах [21].

Спектральное распределение интенсивности излучения ультра­ релятивистского электрона, колеблющегося в поле электромагнит­ ной волны, запишем в виде [25] (см. § 77)

^ -

= л

, [ 1 + 0 - * ) 2

] эрг/(сек-гц),

(2.62)

dv

8 v r ( l cos

ф)

 

 

где v r — частота волны; wr

— плотность энергии в волне;

 

 

Vo Те

( 1 — cosqp)

 

 

Ф угол между вектором скорости электрона и направлением рас­ пространения первичной волны.

Спектр обратного комптоновского излучения электрона, движу­

щегося в изотропном поле излучения, получим из выражения

(2.62)

усреднением по углам ср:

 

~

= ^ ^ - у { 1 + у-2у2 + 2у\пу},

(2.64)

dv

vr

 

где

z/ = v/4H.

(2.65)

 

80


Дифференциальное сечение обратного комптон-эффекта по энер­ гиям рассеянных фотонов

 

 

da

Зат

 

 

(2.66)

 

 

dE V

 

 

 

 

 

ут

 

 

 

где Е.ут

AhvrT\

Зависимость сечения от энергии фотона показана

на рис. 17.

 

 

 

 

 

Теперь получим выражение для светимости единицы объема, за­

полненного ультрарелятивистскими

электронами со

степенным

 

 

Т А Б Л И Ц А 9

 

 

 

Зависимость

коэффициентов

 

 

 

/ O J .

g(Ve)

" т(Уе)

от

 

 

 

показателя

спектра

уе

 

 

 

Уе

f(ve >

8<Ve)

 

 

 

 

1

0,50

2,4

0,56

 

 

 

2

0,53

3,7

2,6

 

 

 

3

0,67

6,5

6,4

Рис.

17. Дифференциальное се­

4

0,94

12,3

12,7

чение

обратного

комптон-

5

1,40

24,8

22,0

 

эффекта.

 

 

 

 

 

 

 

спектром (2.29), на которых рассеивается монохроматическое изо­ тропное излучение с частотой vr и плотностью энергии wT:

 

 

v (тс2)2: - j - ( V e - » > / 2

 

 

 

 

Vr

 

 

 

1,06- ю - м - г ке

6 , 7 - Ю - "

v x - ( Y e

- l ) / 2

/(Ye)

эрг/(см3-стер-гц-сек),

Vr

 

 

 

 

 

 

(2.67)

 

 

 

 

 

 

 

где

 

 

 

 

 

 

 

 

f ( « ) =

3-2v «(y?

+

4ya +

ll )

(2.68)

 

(Ye + 3) 2 (Y e

+ l ) ( 7

e + 5)

 

 

Численные значения коэффициента / е) приведены в табл. 9. Сле­

дует отметить, что показатели спектров фотонов а

и электронов уе

связаны соотношением

 

« = (Y. - 1)/2,

(2.69)

общим для синхротронного и обратного комптоновского механизмов. После открытия реликтового излучения процесс обратного комп­ тоновского рассеяния на равновесном тепловом излучении с план-

ковским спектром

/ ( v ) = - ^ .

, „ L . .

(2.70)

exp (hv/kT) l

81


приобрел исключительно большое значение. Приведем только один пример. Радиоастрономические наблюдения протяженных радиога­ лактик (например, Центавра A-NGC 5128) указывают на существо­ вание огромных, в десятки раз больших, чем оптическая галактика, облаков релятивистских частиц, удерживаемых магнитными поля­ ми. Однако радиоастрономические наблюдения не позволяют опре­ делить ни величину напряженности магнитного поля в облаке, ни плотность энергии космических электронов высоких энергий. Но вследствие обратного комптон-эффекта на реликтовом излучении те же самые электроны будут излучать в рентгеновском диапазоне. Сравнивая интенсивность источника в радио- и рентгеновском диа­ пазонах, можно определить величину напряженности магнитного поля в области генерации излучения ([101], см. также (2.73)).

Светимость единицы объема, заполненного электронами со сте­ пенным спектром (2.29) и равновесным тепловым излучением с тем­ пературой Т, равна

 

/с (V) = \

(kTlftc)3

0 Т Кв

g (Ye) ( m c T ^ - '> X

 

 

X (2nhv/kT)~(ve-l)/2

=:8,9-lO-s,iTs

x

 

 

X ^ e g ( T e ) ( 3 , 2 . 1 0 - 2 3 v / r r ^ - I

) / 2

эрг/(см3

• стер-гц-сек),

(2.71)

где

 

 

 

 

 

 

 

g (Уе) =

f (Уе) Г

1(ув +

5)/2] £ [ ( Т в +

5)/2]

(2.72)

и

£ — дзета-функция

Римана. Численные значения коэффициента

h

е) даны в табл. 9.

 

 

 

объема,

обусловленных син-

 

Отношение светимостей единицы

хротронным излучением в хаотическом магнитном поле Н и обрат­ ным комптон-эффектом на равновесном тепловом излучении с темпе­ ратурой Т, равно

' c ( V c ) = 2 , 0 . l O - ' m W ^ — - №

. (2.73)

/в (V.)

H(Ve+D/2 \

V c

Значения коэффициента можно найти по формуле (см. табл. 9)

m{ye)

= g{ye)/b{ye).

(2.74)

Отношение частот синхротронного и обратного комптоновского

излучений не зависит от энергии электрона:

 

^-=-2,0-104

— .

(2.75)

<vs>

 

Н

'

При описании обратного комптон-эффекта классическую электро­ динамику можно использовать до тех пор, пока энергия излучаемого фотона мала по сравнению с начальной энергией электрона:

Ey(Ee)<tEe

(2.76)

82'


или

Ee<tEt

= (mc2)2/<e> = 2,6- 10"/<е>

эв.

(2.77>

 

Распространение

электронов

с энергиями, большими

критической

Et,

описывается

квантовой

теорией обратного

комптон-эффекта

(см.

§ 2.5).

 

 

 

 

 

§ 2.3.

ТОРМОЗНОЕ ИЗЛУЧЕНИЕ

Введение. Тормозное излучение образуется при столкновениях электронов с заряженными частицами. Все процессы, происходящие в ионизованных газах, обязательно сопровождаются генерацией тормозного излучения. Поскольку большая часть вещества Вселен­ ной находится в ионизованном состоянии, важная роль тормозного излучения как механизма генерации электромагнитных волн не вы­ зывает сомнений.

Чаще всего тормозное излучение проявляется как тепловое излу­ чение нагретой плазмы. Последнее наблюдается во всех диапазонах электромагнитных волн, начиная от радиодиапазона (тепловое из-

Рис. 18. Траектория электрона, сталкивающегося с ионом.

лучение солнечной короны, излучение областей НИ •— облаков меж­ звездного ионизованного водорода) и кончая диапазоном рентге­ новского излучения (мягкое рентгеновское излучение солнечных вспышек, излучение нагретого газа в остатках сверхновых звезд).

Классическая теория тормозного излучения. Приведем основные формулы теории тормозного излучения. Согласно классической тео­ рии, электрон, сталкивающийся с ионом заряда -\-Ze, движется по гиперболе, в фокусе которой находится ион (рис. 18). Движение электрона можно считать классическим до тех пор, пока минимальное расстояние сближения электрона с ионом

Ь0 = 2Ze2/mu2

(2.78)