Файл: Шусторович, Е. М. Химическая связь. Сущность и проблемы.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 19.10.2024
Просмотров: 97
Скачиваний: 0
кластеры с замкнутыми и открытыми электронными обо лочками, с избытком и дефицитом валентных электронов, без мостпковых лигандов и с мостиками, обслуживающими не только два. но и более атомов металла. Наконец, кла стеры могут быть как гомоатомными, так и гетероатом ными 17.
Накопленный к настоящему времени опытный мате риал позволил выявить ряд закономерностей в строении кластерных образований. Пожалуй, важнейшая из них заключается в том, что лиганды слабого поля (галогены, карбоновые кислоты и т. д.) обрамляют кластеры из атомов металлов V —V II групп периодической системы, в то время как лиганды сильного поля (СО, N 0 , С5Н 5 и т. д.) сопут ствуют в основном металлам V I I —V III групп. При этом кластеры первого типа обнаруживают значительное раз нообразие в кратностях связей металл—металл в отличие от кластеров второго типа, где эти связи обычно ординар ные.
Причина этой фундаментальной закономерности может быть понята исходя из различий в силе поля лигандов.
В комплексах с лигандами слабого поля расщепление d-уровней 18 мало, так что в гипотетических мономерных фрагментах M L„ мы можем исходить из неспаренных элек тронов. образующих кратные ковалентные связи М —М. Оптимальные условия образования таких связей отвечают cP—й4-электронным конфигурациям атомов металла 1В, т. е. низшим степеням окисления переходных элементов средних групп периодической системы.
О димерах Re (III) и Mo (II) с четверной связью М — М мы уже говорили. Сюда же относится димер [W 2C10]3-, где центральный атом формально есть W (III) с ^-конфигу рацией, что приводит к образованию тройной связи W —W (с расстоянием 2,41 Â ). Поскольку в кластерной группи ровке М„ кратность связи М —М можно представить как
11 Интересно, что все типы кластеров были синтезированы по чистой случай ности, а сознательная работа химиков до сих пор состоит лишь в замене лигандов в уже существующих кластерных структурах.
*• Напомним, что в теории МО эти d-орбитали являются основными компонен тами слабо антисвязывающих МО комплекса (см. стр. 183).
*' Наиболее прочные связи металл—металл возникают в тетрагональных ди мерах M,L,n (с симметриейО.л или D,j), где связь М—М не может быть более чем четверной. (Компоненты », в, я и 8 образуются при участии соответ ственно dzi, dxz, dyt и d ^ -орбиталей, если линию связи М—М принять sa ось г\ dx -._y~. орбиталь участвует в образовании »-связей М—L.)
210
частное от деления числа пар валентных электронов всех атомов металла на число возможных двухцентровых взаимо действий М —М , то среди обсуждаемых соединений сле дует ожидать набора кластерных структур с различными значениями п. Действительно, существуют галогенидные кластеры, например [Re3C l12]3-, [МовС18]4+ и [Nb„Cl12]2+, где формальные кратности связей М —М соответственно
равны 2; 1 и 0,67 (с расстояниями 2,47; 2,64 и 2,90 А). В комплексах с лигандами сильного поля расщепление d-уровней велико, и в гипотетических мономерных фраг ментах M LM мы должны исходить из спин-спаренных состояний атомов металла. Далее, лиганды такого типа, как известно, в значительной мере удерживаются вслед ствие акцептирования неподеленных электронных пар металла (образования дативных связей М ->-L). Поэтому естественно ожидать существования некоторого нижнего предела электронной заселенности d-орбиталей металла, ниже которого связь металл—лиганд вообще перестает существовать. В таких случаях образование связей ме талл—металл может происходить только с участием не которых «избыточных» электронов, что объясняет возник новение обсуждаемых кластеров в основном для переход ных элементов последних групп периодической системы. Рассмотрим карбонильные кластеры металлов V II группы, которые образуются в виде диамагнитных
димеров М 2(СО)10 с квазиоктаэдрическим окружением ато мов М (см. рис. 43, б). Расщепление металлических d-уров ней во фрагменте М ѵп (СО)5 таково (рис. 44), что выгодно образование только одной a-связи М —М , ибо тас- и 8-взаимодействия будут фактически антисвязывающими из-за полной заселенности соответствующих d-орбиталей.
Поэтому наблюдаемое расстояние М —М (около 3 А для Мп, Те и Re) мы можем приписать длине ординарной связи М —М . Этот качественный вывод подтверждается деталь ными расчетам карбонильных кластеров. (Из расчетов, в частности, следует, что столь большое равновесное рас
стояние М —М |
в |
М 2(СО)10 |
обусловлено |
тем, что при |
||||
R |
(М—М) < |
3 A |
d_—d^-антисвязывание начинает |
прева |
||||
лировать |
над da—(^-связыванием.) |
|
|
|||||
|
Таким |
образом, |
образованию кратных |
связей |
М —М |
|||
в |
кластерах |
с |
лигандами |
сильного поля |
препятствуют |
по крайней мере два существенных фактора: 1) заморожен-
211
ность части валентных электронов атомов М в связыва нии металл—лиганд и 2) дестабилизирующий характер тс- и 8-взаимодействий металл—металл в кластерных груп пировках.
Далее, из полей различной возможной симметрии во фрагменте M L 5 наибольшее понижение энергии ^ -орби тали, принимающей участие в образовании о-связи М —М в димере M 2L 10, происходит в тетрагональном поле; на помним, что в квадратных комплексах M L4 с^-орбиталь
Рис. 44. Расщепление и за селенность d-уровней во фраг менте MVJI (СО)5
а) в исходном октаэдрическом поле (Од); б) в тетрагональном поле (С1с)
а6
лежит ниже всех остальных d-орбиталей (см. рис. 38, г). Поэтому можно полагать, что наибольшая стабилизация кластеров с лигандами сильного поля будет отвечать ква зиоктаэдрическому окружению атома металла (по сравне нию с другими возможными координациями), что благо приятно также из чисто стерических соображений. Тот опытный факт, что, за исключением Ѵ(СО)„, все мо ноядерные карбонилы переходных металлов имеют 18-электронную валентную оболочку, позволяет ожидать, что и в кластерных крабонилах такая оболочка будет наи более предпочтительной. Для ее образования в исходном моноядерном карбониле место связи М —СО должна занять ординарная о-связь М —М.
Действительно, рассмотренные выше димеры М уІІ(СО)10 подтверждают это предположение. Но тогда мы можем предвидеть, что переходные металлы V III группы периодической системы также способны к образованию 18-электронных кластерных карбонилов (без мости-
212
новых СО-групп 20) с квазиоктаэдрической |
коорди |
нацией атомов металла и без кратных связей |
М —М . |
Это означает, что для атомов с 8 валентными электронами стабильным может быть трехъядерный треугольный кластер Ма(СО)12, где кажый атом М образует по одной ординарной о-связи с остальными двумя атомами М и связан с четырьмя СО-группами, которые вместе создают 18-электронную оболочку и квазиоктаэдрическое окру жение каждого атома металла (рис. 45, а). Для Ru и Os
|
“ |
б |
|
Рис. 45. Геометрия кластеров Оз3(СО)12 (а) и Іг4(СО)12 (б) |
|||
Зачерненные кружки — атомы металла; |
светлые |
кружки — группы СО |
|
опыт |
подтверждает такое строение, |
причем расстояние |
|
М —М |
здесь составляет около |
2,9 Â . |
Аналогично в слу |
чае иридия (атом с 9 валентными электронами) существует четырехъядерный тетраэдрический кластер Іг4(СО)12, где каждый атом Іг имеет 18-электронную оболочку, образуя по одной ординарной a-связи с остальными тремя атомами Іг и связи с тремя СО-группами, в целом занимающими квазиоктаэдрические позиции (рис. 45, б). Правда, расстояния
М —М |
здесь около 2,7 Â , что отвечает некоторому увели |
||||
чению |
кратности |
связи |
М —М . |
|
|
Можно |
также |
добавить, что в упоминавшемся выше |
|||
биядерном |
кластере |
[С5Н 5)Мо(СО)а]2 также |
имеется |
||
18-электронная валентная оболочка, причем из-за |
ухудше- |
s° Стоит, однако, отметить, что согласно некоторым квантовохиыпческим рас четам даже в димерах М,(СО)10 существует стабилизующее взаимодействие металла и лигандов разпых фрагментов. Это делает отнесение лигандов к мостиковым и немостиковым отнюдь не тривиальной задачей даже при знании геометрии комплекса.
213
ния стерических условий (по сравнению с чисто карбониль ными квазиоктаэдрическими кластерами) длина ординар
ной связи М —М здесь заметно увеличена (3,22 Â). Изложенная концепция достаточно обща для понимания
важнейших черт строения кластеров и вместе с тем до статочно определенна для описания особенностей различ ных классов кластерных соединений ( и даже их отдельных представителей) 21. Ыа этом примере мы еще раз убеж даемся в пользе простых и общих представлений, основан ных в значительной мере на симметрии связывающих и аптнсвязывающих М О.
11По мере усложнения состапа кластеров простые модельные объяснения ста новятся все менее однозначными. Поэтому мы пе будем останавливаться
на строении комплексов FeJ(CO)„,.Co.1(CO)i, и Rh4(CO),t, где часть СО-групп являются мостиковыми, а связи М—М неэквивалентны и имеют явно крат ный характер. Подробности см.: Е. М. Ш у с т о р о в и ч, Д. В. К о р о л ь к о в . Ж. струит, химии, 13, 682 (1972).
Глава IX
Х И М И Ч Е С К А Я СВ Я ЗЬ И Р Е А К Ц И О Н Н А Я СПОСОБНОСТЬ
Мы уже рассмотрели различные аспекты теории химиче ской связи применительно к строению молекул. Все это не только интересно само по себе, но и необходимо для суждения о реакционной способности химических сое динений. В настоящей главе мы кратко обсудим некото рые относящиеся сюда вопросы.
Принципы и приближения. Теория реакционной спо собности представляет собой, пожалуй, наиболее важный (однако и наиболее сложный) раздел всей теоретической химии. Без такой теории невозможен расчет скоростей реакций. Расчет этот очень сложен, ибо необходим учет многих факторов. Из них принято выделять три основ ных: 1) структурный (строение исходных, промежуточных и конечных соединений, определяющее форму адиабати ческих поверхностей потенциальной энергии систем); 2) динамический (вероятности переходов систем из началь ных состояний в конечные); 3) статистический (совокуп ная кинетика элементарных актов реакции).
Достаточно полный анализ уже этих трех факторов обычно неосуществим. Оптимальным упрощением явля ется предположение, что лимитирующая стадия реакции —
возникновение некоторого |
активированного |
комплекса, |
|
так что |
константа скорости |
К имеет обычную |
(аррениу- |
совскую) |
форму |
|
|
К = А e x p ( — E alkT),
где энергия активации Е а определяется структурным фактором, а предэкспонент А — динамическим и стати стическим. В пределах одного реакционного ряда (охваты вающего совокупность реакций с одним и тем же реакци онным центром и разными заместителями) предэкспонент можно считать примерно постоянным, что сводит к мини муму его влияние на относительные скорости реакций
215
(для разных заместителей). Это позволяет определять скорости реакций исходя из одного лишь структурного фактора и тем самым оправдывает поиски корреляций между строением и реакционной способностью молекул. В этом и состоит существо традиционного химического подхода к проблеме реакционной способности.
Мы не будем обсуждать обоснованность исходных принципов и следствий теории активированного комплекса, ибо выявлению областей применимости (и неприменимости) этой теории посвящена обширная специальная литература. Для нас важна лишь общая идея о том, что в пределах определенных реакционных рядов могут существовать некоторые характеристики реакционной способности мо лекул, зависящие от их электронного строения. Последнее означает, что такие характеристики могут быть в прин ципе оценены с помощью представлений и методов кван товой химии или установлены эмпирическим путем (в тер минах индуктивных, резонансных и прочих «эффектов»). К характеристикам первого типа относятся различные
индексы реакционной способности (величины эффективных зарядов для реакций электрофильного и нуклеофильного замещений, энергии локализации и стабилизации и др.), к характеристикам второго типа — корреляционные соот ношения типа Гаммета и Полянп.
Успех здесь, как правило, связан с умелым выбором реакционного ряда, так что рассмотрение относящихся
сюда данных |
потребовало бы слишком много времени |
и вникания |
в мелкие экспериментальные детали. Это |
не входит в нашу задачу. В настоящей главе мы остано вимся только на так называемых согласованных реакциях, ибо в последние годы эта область была удивительным образом упорядочена на основе фундаментальных прин ципов теории химической связи.
Правила Вудворда—Хоффмана1. При любой химиче ской реакции происходит перераспределение электрон ной плотности между ядрами, входящими в состав реа гентов и конечных продуктов. При этом одни химические связи рвутся, а другие — возникают, что в основном и определяет происхождение энергии активации. Если переход от реагентов к конечным продуктам совершается
1 Р. В у д в о р д , Р. Х о ф ф м а н . Сохранение орбитальной симметрии. «Мир», М., 1971.
216