ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 22.10.2024
Просмотров: 65
Скачиваний: 0
Re = степень турбулентности потока е0 и показатель адиа
баты k, а для двухфазных потоков — градиент давления р _ 1 dp ; безразмерный диаметр капель (число Кнудсена) Кп
рdx
---= dll\ число Вебера We |
dpj A c2 , |
; безразмерные времена релак- |
сации движения, фазовых переходов и другие параметры. Задачу моделирования можно значительно упростить, если
для определенных процессов исключить некоторые критерии по добия, которые почти не влияют на течение процесса. Так, напри мер, при скоростях потока, существенно меньших скорости звука (М < 0,3), не будет большой ошибкой, если числа М в модели и натуре не равны. Точно так же при больших числах (Re > 106) соблюдаются условия автомодельности, т. е. характер обтекания перестает зависеть от Re. Наконец, во многих практических случаях можно также пренебречь некоторым отклонением пока зателя изоэнтропы k, что позволяет, например, исследовать решетки паровых турбин в атмосфере воздуха.
Следует указать и на другую условность, которая исполь зуется в данной методике при переносе модельных испытаний на натуру. В моделях турбинных решеток и ступеней трудно обеспечить полное геометрическое подобие: толщины кромок, шероховатости поверхностей, зазоров; кроме того, испытать мо дели всех ступеней, применяющихся в практике, просто невоз можно. Поэтому в расчетах натурных турбин часто используют зависимости влияния чисел Re и М по данным испытаний ступеней и решеток, имеющих неполное геометрическое подобие. Такой прием позволяет лишь приближенно оценивать экономичность, степень реакции и коэффициенты расхода ступеней.
В этой связи в некоторых случаях приходится даже отказы ваться от использования безразмерных параметров. Так, напри мер, применяемые в данной методике исходные графики зависи мости лопаточного к. п. д. от и/сф построены для разных абсолют ных значений высот лопаток / (стр. 22) при постоянной хорде Ь. Это связано с тем, что при неполном геометрическом моделирова
нии ступеней и постоянной относительной высоте I — Иb к. п. д. ступеней могут быть различными, т. е. оказывается не безразлич
ным, за счет высоты / или хорды b меняется Г. Поэтому в методике исходный график дается в виде зависимости т]к = / (1\ и/сф) при постоянных значениях ряда других режимных и геометри ческих параметров, а влияние хорды учитывается в виде поправки.
Классификация решеток и ступеней
Возможны самые различные методы выбора определяющих пара метров для классификации решеток и ступеней. По назначению решетки подразделяют на реактивные (сопловые, неподвижные)
10
и активные (рабочие, вращающиеся). В свою очередь, реактив
ные |
и активные решетки можно разделить на несколько |
групп |
|
в зависимости от чисел М на входе или выходе из решетки: |
|
||
1. |
Группа |
А решетки для звуковых скоростей (М < 0,9). |
|
2. |
Группа |
Б — для околозвуковых скоростей (0,9 < М |
1,1). |
3.Группа В — для небольших сверхзвуковых скоростей (1,1 <
<М < 1,5).
4. Группа ВР — для больших сверхзвуковых скоростей (М > > 1,4). Рассмотрим основные особенности профилей этих групп (рис. 4). Профили группы А выполнены с обводами плавно меняю-
Рис. 4. Схемы сопловых и рабочих решеток групп А, Б, В и ВР для различных скоростей
щейся кривизны, причем входная и выходная кромки скруглены. Межлопаточные каналы плавно суживаются к выходу. Профили сопловых решеток группы Б выполнены с прямолинейными уча стками на спинке в косом срезе, а рабочих решеток с прямоли нейными обводами также и на входном участке спинки. Каналы решеток этой группы суживающиеся. Радиус скругления входных кромок уменьшен по сравнению с профилями группы А. Профили сопловых решеток группы В выполнены с вогнутой поверхностью на выходном участке спинки профиля. Каналы — суживающиеся. Рабочие решетки имеют каналы постоянного сечения со значи тельными прямолинейными участками на спинке профиля. Ре шетки группы ВР выполняют с суживающе-расширяющимися каналами. Профили в косом срезе могут быть плавными с обрат ной вогнутостью или с Изломами. В соответствии с предыдущей классификацией примем следующую систему обозначения профи
лей. Первая буква указывает |
тип |
решетки (С— реактивная, |
||
в |
активных |
ступенях — сопловая, |
в реактивных — сопловая- |
|
и |
рабочая, |
Р ■— активная, в |
активных ступенях — рабочая, |
|
в |
ступенях |
скорости — рабочая |
и поворотная). |
11
Первая пара цифр обозначает угол входа, а вторая — опти мальный угол выхода (для профилей с углами входа более 100° первые три цифры соответствуют углу входа). Последняя буква определяет расчетный режим по числу М. Так, например, ре шетка С-9012А — реактивная, рассчитанная на угол входа а 0 =
= 90°, |
угол |
выхода |
а х = 12°, |
скорости |
дозвуковые. |
Ре |
||
шетка |
Р-3021Б — активная, угол |
входа |
(Зх = |
30°, выхода |
(52 = |
|||
= 21°, скорости (табл. 1) околозвуковые. |
|
|
|
|
||||
1. Основные геометрические характеристики некоторых решеток профилей |
||||||||
|
|
Московского энергетического института (МЭИ) |
|
|
||||
Обозначение |
Тип решетки |
Относительный шаг |
Эффективные |
Углы |
входа |
|||
решетки |
t = t/b |
углы выхода |
а 0; Pi в ° |
|||||
|
|
|
а 1эф’ |
^2Эф в ° |
|
|
||
С-9012А |
|
Сопловая |
0,72—0,86 |
10,5—13,5 |
90± 20 |
|||
С-9015А |
|
» |
0,70—0,85 |
13—17 |
90±20 |
|||
С-9018А |
|
» |
0,70—0,80 |
16—20 |
90± 20 |
|||
С-9012Б |
|
» |
0,72—0,87 |
10—14 |
90± 20 |
|||
С-9015Б |
|
» |
0,70—0,85 |
13—17 |
90± 20 |
|||
Р-2314А |
|
Рабочая |
0,60—0,75 |
12—16 |
20—30 |
|||
Р-2617А |
|
(активная) |
0,60—0,70 |
15—19 |
23—35 |
|||
|
То же |
|||||||
Р-3021А |
|
» |
0,58—0,68 |
19—24 |
25—40 |
|||
Р-3525А |
|
» |
0,55—0,65 |
22—27 |
30—50 |
|||
Р-4629А |
|
» |
0,45—0,58 |
25—31 |
44—60 |
|||
Р-5033А |
|
» |
0,43—0,55 |
30—36 |
47—65 |
|||
Р-2617Б |
|
» |
0,57—0,65 |
15—19 |
23—45 |
|||
Р-3021Б |
|
» |
0,55—0,64 |
19—24 |
24—40 |
|||
Р-3525Б |
|
» |
0,55—0,64 |
22—28 |
30—50 |
|||
Р-6038А |
|
» |
0,41—0,51 |
35—42 |
55—75 |
|||
С-5515А |
|
Сопловая |
0,72—0,87 |
12—18 |
45—75 |
|||
С-6520А |
|
» |
0,60—0,70 |
17—23 |
50—85 |
|||
С-7025А |
|
» |
0,50—0,67 |
22—28 |
50—90 |
В зависимости от величины теплоперепада (чисел М) и от типа решеток турбинные ступени также классифицируются на дозвуковые, околозвуковые и сверхзвуковые.
Решетки и ступени можно классифицировать также по геоме трическим размерам (относительной высоте и веерности), влияние которых должно рассматриваться совместно. В решетках малой
относительной |
высоты (/ = |
ИЬ < 1,0) |
и малой |
веерности |
(Ф = |
— l/d <0,05) |
поток из-за |
смыкания |
вторичных |
течений |
имеет |
четко выраженную вихревую структуру. Малая веерность поз воляет с большей надежностью использовать результаты испы
таний прямых решеток. В решетках средней высоты (1,0 < / <
<13,0) и средней веерности (0,05 < Ф < 0,1) течение можно рассматривать плоским, исключая корневые и периферийные сечения, где движение газа имеет также вихревой характер. Обте
кание решеток большой высоты (/ )> 3,0) и большой веерности (O' > 0 ,1 ) следует отнести к группе пространственных задач.
12
Изменения параметров по высоте в таких решетках оказываются значительными, и лопатки этой группы следует выполнять с пе ременным профилем вдоль радиуса.
В методике используются по существу эти два метода класси фикации: по веерности ■&и относительным скоростям М.
Приближенный расчет основных характеристик решеток
Как отмечалось выше, в настоящей методике расчет к. п. д., реактивности, расхода и других параметров базируется на резуль татах испытаний модельных и натурных ступеней. Однако для
Q 4 |
0,6 |
0,8 |
1,0 S) 1,2 |
1,6 |
1,6 |
1,8 |
МР |
Рис. 5. Коэффициент потерь £' и поправки, учитывающие влияние различных параметров на коэффициент потерь:
a - t ’ = f ( b / l , У, АР): <5 — *м = / (Мр); в - ка% = / [ а , О*)]:
г —*Re= fRe
13
построения треугольников скоростей и расчета отдельных сече
ний |
длинных |
лопаток |
необходимо |
знать коэффициент |
потерь |
£ |
|||||||
(коэффициенты скорости ф или ф), |
углы выхода потока а 1 ф 2) |
и |
|||||||||||
коэффициент |
расхода |
(р2). |
потерь £ |
в решетках |
(или ф = |
||||||||
Приближенно |
коэффициент |
||||||||||||
= У 1 — £) оценивают |
по |
формуле |
|
|
|
|
|
|
|||||
|
|
|
|
£ = |
t,'kykKkakRe, |
|
|
|
|
|
|||
где |
£' — коэффициент |
потерь |
при |
а 1 (|32) = |
20°; |
а 0 (рг) = |
|||||||
= |
опт (Piопт); t = 4пт-. м = 0,8 |
и |
Re s- 7 -105; |
(рис. |
5, a); ky, |
||||||||
|
У |
|
|
|
|
|
|
|
|
|
|
|
|
|
Q96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
0,92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
088 |
|
|
|
|
|
|
|
|
|
|
|
|
|
0,89 |
0,5 |
1,0 |
1,5 |
2,0 |
а) |
2,5 |
5,0 5,5 |
b/L |
|
|||
|
О |
|
|||||||||||
|
Q98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
099 ___ Zк |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
9 |
о |
6 |
7 |
8 |
Р е -10'* |
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
||
|
Рис. 6. Зависимость коэффициента расхода ц от относитель |
|
|||||||||||
|
ной высоты решеток и конфузорности канала, а также по |
|
|||||||||||
|
|
|
правка влияния |
на |
р, |
числа Re: |
|
|
|
|
|||
|
а — ц = |
ЦЬ/1, |
s i n a 0 (P,)/sina, (Р2); |
б — k Re = |
f Re |
|
|
||||||
&м, ka и kRe — поправки, учитывающие |
влияние |
угла у раскры |
|||||||||||
тия решетки, расчетного числа М, |
угла |
выхода а 1 (Р2) и числа |
|||||||||||
Рейнольдса Re (рис. 5, б—г). |
|
|
|
|
|
|
|
|
Предполагается, что решетки спрофилированы на оптимальное
значение шага t и обтекаются потоком газа с расчетными углами входа a 0 (j^). При определении коэффициентов £ не учитываются влияние содержащейся в потоке пара влаги и возможные откло нения геометрических и режимных параметров от оптимальных величин. Следует отметить, что точность данного метода для построения треугольников скоростей длинных витых лопаток недостаточна (см. гл. V). Чтобы найти изменение коэффициентов потерь^ при отклонениях от оптимальных (расчетных) значений
шага t, углов установки а у (Ру) и входа потока а 0 (рх), чисел М и других параметров, необходимо пользоваться характеристи ками решеток [1].
14