Файл: Коломников, В. П. Динамика объемов и продолжительности производства продукции.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.10.2024

Просмотров: 57

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

F

крит

=14,2;

 

R =

0,828;

 

 

 

 

 

*

9

 

А = -1164342;

4 ,

=1368;

 

4 ?

-13 68;

= -7490045;

^а,

=

 

ч

-2 ,3 .

Ч

 

 

 

 

Модель автомобиля "Москвич-407".

Пу ч а с т о к

У*=-662686099 + 6651911 -1 6 9 1 2,

 

 

1961,75

< t

<

1963,75,

 

 

 

^кр *3 1 2 ;

R =0,99;

 

 

^

 

= - 6626686; ^

= 4359;

*PQ

= - 4360,*

4 О = - 166298356;

t Q1 = 15,8 ;

4 2 - - 15,8.

 

Модель автомобиля

"М осквич-403"

описывается

уравнением регрессии

 

 

 

 

 

У = -513216278 + 522502 £ - 1 3 3 t 2,

 

 

 

1963,25

«с

t <

1965,25,

 

 

 

/^кр =27,26;

 

/? =0,9 5;

 

 

4 о = -8092711;

Д

=5318;

4 г г

-45318;

£

4

= -62895870;

4 , = 5 ,8 ;

 

4 ? 2

-5 ,9 .

 

 

 

 

 

 

 

Модель автомобиля "М осквич-408".

1у ч а с т о к

У=-108115216 + 109886 t -2 7 ,9 £ 2,

1964,75

 

<

t = 1969,75;

/■”Кр = 29;

 

Л “ 0,87;

 

 

4 = -1301381;

4

=2002;

4

г = -2 0 0 2 ;

4 = -11 332 4;

t

= 8 ;

t Q

- - 6 .

иО

 

 

 

1d

- 82 -


Пу ч а с т о к

Уравнение регрессии имеет вид;

У* -183881561 + 186593 t -47,3 t 2,

 

1969,75

* = £ ^ 1971,75,

 

F

= 9 ,3 ;

 

R = 0,87;

 

А 0 = -9205588;

fiQ,

“ 6030;

P q z

= -6 0 3 0 ;

^-Од = -45631588;

4 ,

“ 4 ,3 ;

^ 2

= -4 ,3 .

Модель автомобиля "M ockbh4 -412"

^= -30156581+30595 t - l f i t 2,

 

1968,5

*= t

<

1961,5,

f

кр = 5 6 ;

 

R = 0,96;

 

Ааа = -

1 4 18 1 68 ;

А а,

ш1346;

-- 1 3 4 5 ;

tgo = -

1569197 3;

fa, = 3 ,1 ;

 

^ az ~

Коэффициенты параболы были получены по програм­ ме, которая вычисляет регрессии по указанной форме связи. Если исследователь не имеет данной програм­ мы, то аналогичные результаты можно получить путем сглаживания экспериментальных кривых от руки и по­ лученные таким образом кривые аппроксимировать поли­ номом нужной степени. В нашем случае такая работа

была

проделана и результаты аппроксимации проведены

в табл. 9 и на рис. 9

(см. пинию-------- ). Результаты

этой

аппроксимации

вполне удовлетворительны, но

данная программа по сравнению с последним методом имеет те преимущества, что она выдает на печать много других ±арактеристик и параметров, которые дают полный анализ полученных: уравнений регрессии.

Следующим этапом решения задачи является выяв­ ление закономерностей поведения коэффициентов полу­

ченных

уравнений, для того чтобы впоследствии мож­

но было

прогнозировать коэффициенты уравнения.

83 -


 

 

 

 

Т а б л и ц а

9

Результаты

аппроксимации

 

Уравнение кривой

Интервалы

Номер мо­

 

времени

дели ав­

 

 

 

 

 

 

томобиля

^ --1 1 1 ,5 + 3 1 2 ^ ^ -78 ,4^ 2

I

<

 

^

3 L

401

 

1954 4 x 4

1956 ^

 

- -2 1 2 2 + 1 0 7 8 /-I 2 5 f 2

3 j -

4

/ 4

5 7

402

 

4

 

 

 

 

4

 

 

1956

 

4

х 4 1958 J

 

^ --1 1 3 3 + 3 6 0 / -2 3 ,4 / 2

5

4

t

4

 

e l-

407

 

 

 

 

 

 

 

( 1 )

 

1958 4

x 4. 19611-

 

^ « -9 7 4 5 + 2 1 3 4 / -1 1 3 1 2

8 j 4 / 4 10j

407

 

4

 

 

 

 

4

 

 

 

 

 

 

 

(П)

1961 7 4 x 4 1963 ~

 

 

 

4

 

 

 

4

 

^ --17621+31 П ^ -Ю б / 2

Ю^-

4

t

4

1 2 *-

403

 

 

 

 

 

 

 

1963^-4 X

41965 7

 

 

4

 

 

 

4

 

- 84 -


 

Продолжение

табл. 9

Уравнение кривой

Интервалы

Номер мо­

 

времени

 

дели ав­

 

 

 

 

 

томобиля

^ Г « -6591+9401 -3 2 £ 2

I l f

^ ^ 4 -1 6 j

408

 

4

 

 

4

 

1 9 6 4 j «

х 4 1969 ~

( I )

 

 

 

4

 

 

4

 

^ «-18049+20671 -8 8 1 2

1 б |

4

t ^

l 8 |

408

 

 

 

 

 

 

 

 

 

 

( П)

 

1969 “ ■

N<x>< 19711

 

^ * -4 0 1 5 + 4 5 б £ -1 2 ,7 1 2

1 5 ^ t « 4 8 j

412

 

 

 

 

 

 

1968 g

4: x «

1971

(1 )

 

 

j * -34217+38141 —89^ 2

 

 

 

 

412

 

 

 

 

 

 

 

1971

< x

( П)

 

 

 

^ t « х - 1958.

В ходе исследований целесообразно установить ха­ рактер соотношений между коэффициентами, которые были бы постоянны для всех моделей автомобилей. Например, соотношение между максимумом кривой и расстоянием между корнями параболы. Или, например, построить регрессионные кривые зависимостей коэффи­ циентов парабол от времени. Тогда эту задачу можно

- 85 -