Файл: Вариант 7 н айти область определения функции и изобразить её на плоскости Д ля заданной функции область определяется следующим неравенством, или..doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.02.2024

Просмотров: 17

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Вариант № 7

  1. Н
    айти область определения функции и изобразить её на плоскости: .

Д ля заданной функции область определяется следующим неравенством:
, или . Это неравенство определяет область, расположенную выше линии параболы , причём сама линия параболы не входит в указанную область (см. рисунок).

Ответ: .

  1. Вычислить частные производные и сложной функции в данной точке: при .

Частные производные сложной функции двух переменных находятся по формулам и . В данном случае . Следовательно, ,

. Заметим, что в точке промежуточные переменные равны: . Подставляя в частные производные , получим: , . Ответ: , .

  1. Найти уравнение касательной плоскости и нормали к указанной поверхности в данной на ней точке: .

Касательная плоскость и нормаль к поверхности

в точке имеют следующие уравнения: а) (касательная плоскость): (нормаль). В данном случае . Найдём частные производные от в точке : . Подставим найденные частные производные в уравнения касательной плоскости и нормали: , . Ответ: а) Уравнение касательной плоскости: ; б) Уравнение нормали: .

  1. Найти наибольшее и наименьшее значения функции в области D: .

С тационарная точка не является точкой экстремума, поскольку функция является возрастающей функцией своих аргументов. На границе области D , , функция имеет вид . Тогда . Приравнивая производную к нулю, получим четыре стационарные точки



. Стационарные точки расположены в верхней полуокружности, т.е. , точки - в нижней части, т.е. . В этих точках функция соответственно равна: . Сравнивая эти значения, видим, что наибольшее значение функция принимает в точках , а наименьшее значение - в точках . Ответ: наибольшее значение функции - в точках , наименьшее значение - в точках .

  1. Изменить порядок интегрирования: .

В
осстановим область интегрирования (D) по пределам повторных интегралов: , . Изобразим область интегрирования на чертеже (см. рисунок). Найдём точки пересечения парабол и : . Порядок интегрирования в данном интеграле показан штриховкой на первом графике. На втором графике штриховка изменена на вертикальную. Из рисунка видим, что данная область является y – трапецией. На нижней границе
, на верхней границе . Поэтому и в результате подстановки пределов получим следующий повторный интеграл: . Ответ: .

  1. Н
    айти объём тела, ограниченного указанными поверхностями: .

Основанием тела в плоскости ХОУ является область D, ограниченная параболой и окружностью , которые пересекаются в точке . Снизу тело ограничено плоскостью , сверху – плоскостью (см. рисунок). Таким образом,

. Ответ: .

  1. Н
    айти объём тела, ограниченного указанными поверхностями: .

Параболоид вращения ограничен сверху плоскостью (см. рисунок). Проекция тела на плоскость ХОУ представляет круг . Сверху тело ограничено плоскостью, а снизу – поверхностью параболоида. Удобно перейти к цилиндрическим координатам: