Файл: Вариант 7 н айти область определения функции и изобразить её на плоскости Д ля заданной функции область определяется следующим неравенством, или..doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.02.2024
Просмотров: 19
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
. Уравнением параболоида будет , уравнением плоскости - , уравнением круга - . Областью интегрирования будет область . Следовательно,
. Ответ: .
Т ело расположено между двумя концентрическими сферами с центрами в начале координат радиуса 1 и 7, конусом (сверху), и двумя плоскостями и . Перейдём к сферической системе координат: . Якобиан преобразования равен . Уравнение малой сферы будет , большой сферы - , На плоскости будет или ., а на плоскости будет
или . Уравнение конуса переходит в уравнение . Таким образом, тело занимает следующую область: . Объём тела равен: . Или . . Ответ: .
Пластинка занимает область D, и
зображённую на рисунке. Область неудобна для интегрирования в декартовой системе координат. Поэтому перейдём к эллиптической системе координат: . Уравнением меньшего эллипса будет: . Аналогично, для большего эллипса получим: . Якобиан преобразования равен . На прямой линии имеем . Область, занимаемая пластинкой, есть . Тогда . Ответ: .
Т
ело представляет часть шара, «вырезанную» цилиндрической поверхностью
Цилиндрпересекается с поверхностью сферы на высоте (см. рисунок). Область интегрирования: . Интегрирование в декартовой системе координат неудобно. Перейдём к цилиндрической системе координат: . Таким образом, тело занимает следующую область: . При этом плотность тела равна . Масса тела равна: . Или . Ответ: .
П
D
реобразуем криволинейный интеграл по замкнутому контуру в двойной по формуле Грина: . Область интегрирования изображена на рисунке. Для заданного интеграла получаем: . Действительно, в полярных координатах якобиан преобразования равен . Следовательно, .
Ответ:
.
.
М
ассу дуги вычисляем с помощью криволинейного интеграла первого рода: . В данном примере линия и плотность заданы в полярных координатах, где . Следовательно,
. Ответ: .
Работу вычисляем по формуле: . Линия находится в пересечении цилиндрической поверхности и плоскости (см. рисунок). Перейдём к параметрическому заданию линии: . Найдём значение параметра t, при котором достигаются точки M и N; ; . Тогда
.
Ответ: Работа равна .
Производная по направлению находится по формуле: , где - координаты единичного вектора данного направления. Найдём частные производные функции в заданной точке: .
Следовательно, . Найдём координаты вектора , где :
. Таким образом, . Найдём единичный вектор нормали
. Ответ: .
-
Найти объём тела, ограниченного указанными поверхностями: .
Т ело расположено между двумя концентрическими сферами с центрами в начале координат радиуса 1 и 7, конусом (сверху), и двумя плоскостями и . Перейдём к сферической системе координат: . Якобиан преобразования равен . Уравнение малой сферы будет , большой сферы - , На плоскости будет или ., а на плоскости будет
или . Уравнение конуса переходит в уравнение . Таким образом, тело занимает следующую область: . Объём тела равен: . Или . . Ответ: .
-
Найти массу пластинки:
Пластинка занимает область D, и
зображённую на рисунке. Область неудобна для интегрирования в декартовой системе координат. Поэтому перейдём к эллиптической системе координат: . Уравнением меньшего эллипса будет: . Аналогично, для большего эллипса получим: . Якобиан преобразования равен . На прямой линии имеем . Область, занимаемая пластинкой, есть . Тогда . Ответ: .
-
Найти массу тела: .
Т
ело представляет часть шара, «вырезанную» цилиндрической поверхностью
Цилиндрпересекается с поверхностью сферы на высоте (см. рисунок). Область интегрирования: . Интегрирование в декартовой системе координат неудобно. Перейдём к цилиндрической системе координат: . Таким образом, тело занимает следующую область: . При этом плотность тела равна . Масса тела равна: . Или . Ответ: .
-
R
Вычислить криволинейный интеграл по формуле Грина: .
П
D
реобразуем криволинейный интеграл по замкнутому контуру в двойной по формуле Грина: . Область интегрирования изображена на рисунке. Для заданного интеграла получаем: . Действительно, в полярных координатах якобиан преобразования равен . Следовательно, .
Ответ:
.
-
Вычислить массу дуги кривой (L) при заданной плотности :
.
М
ассу дуги вычисляем с помощью криволинейного интеграла первого рода: . В данном примере линия и плотность заданы в полярных координатах, где . Следовательно,
. Ответ: .
-
Вычислить работу силы при перемещении вдоль линии от точки M к точке N: .
Работу вычисляем по формуле: . Линия находится в пересечении цилиндрической поверхности и плоскости (см. рисунок). Перейдём к параметрическому заданию линии: . Найдём значение параметра t, при котором достигаются точки M и N; ; . Тогда
.
Ответ: Работа равна .
-
Найти производную функции в точке по направлению внешней нормали к поверхности , заданной уравнением , или по направлению вектора : .
Производная по направлению находится по формуле: , где - координаты единичного вектора данного направления. Найдём частные производные функции в заданной точке: .
Следовательно, . Найдём координаты вектора , где :
. Таким образом, . Найдём единичный вектор нормали