ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 02.02.2024
Просмотров: 654
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
3. Описание и классификация активных фильтров. Фильтр нижних частот.
4. Описание и классификация активных фильтров. Фильтр верхних частот.
5. Описание и классификация активных фильтров. Полосовые фильтры.
9. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор Буббы.
6 – 10 вопросы. Заключение по всем генераторам.
14. Принципы автоматического управления. Общие сведения о структурах систем управления. Регуляторы.
15. Электрический ток в вакууме. Вакуумный диод. Вакуумный триод.
- Минимально возможное количество силовых транзисторов - потери в 2 раза меньше и стоимость ниже
- Сквозной ноль. Это упрощает процесс сертификации, особенно CE и ATEX. Связано это с тем, что сквозной ноль позволяет системам защиты по входу (например, УЗО) срабатывать так же при возникновении аварии в выходных цепях после преобразователя
Недостатки:
- Необходимость двухполярного источника питания
- Удвоенное количество высоковольтных конденсаторов. Высоковольтные конденсаторы большой емкости и с малым ESR на мощностях от 3-4 кВт начинают составлять от 20 до 40% стоимости компонентов
Мостовая топология
Достоинства:
- Очень высокая надежность
- Входная емкость меньше
- Минимальные пульсации напряжения на транзисторах
- Простота и понятность алгоритмов работы
Недостатки:
- Увеличенное количество силовых транзисторов - необходимо более серьезное охлаждение
- Повышенная сложность драйвера, особенно при требованиях к наличию гальванической развязки
Как видите из реальных минусов мостовой топологии лишь повышенное требование к охлаждению транзисторов.
Принцип работы АИ (мостовая топология) представлен ниже.
Способы формирования напряжения синусоидальной формы.
Математическое описание формы выходного напряжения инвертора:
Амплитуда n-й гармоники напряжения:
Напряжение на выходе инвертора должно иметь форму, близкую к синусоидальной. В противном случае уменьшается коэффициент мощности устройства, возрастают электромагнитные помехи. Если инвертор используется в качестве источника питания асинхронного электродвигателя, наличие высших гармоник вносит дополнительные потери.
Если нагрузка мостового инвертора резистивная, выходное напряжение имеет форму прямоугольных импульсов.
Разложение в ряд Фурье такого сигнала содержит только нечетные гармоники.
Для уменьшения амплитуд высших гармоник на выходе инвертора включают LC-фильтр нижних частот (ФНЧ). Сглаживающий фильтр может иметь большую частоту среза, и, следовательно, меньшие габариты, если в спектре выходного напряжения гармоники низшего порядка (n =3, 5) отсутствуют.
Однократная широтно-импульсная модуляция.
Математическое описание формы выходного напряжения инвертора:
Амплитуда n-й гармоники напряжения:
При такой модуляции импульсное напряжение содержит только один импульс за половину периода. δ – угол включения. Варьируя угол включения – меняем амплитуды гармоник.
Можно исключить пятую гармонику, полагая δ=18ͦ. Однако для одновременного исключения третьей и пятой гармоник необходимо сформировать импульсное напряжение более сложной формы.
Многократная широтно-импульсная модуляция.
В этом случае напряжение представляет серию импульсов за половину периода.
Напряжение такой формы позволяет исключить две высших гармоники. Однако это не могут быть одновременно третья и пятая гармоники.
Для исключения третьей и пятой гармоник необходимо напряжение, содержащее три импульса на полупериоде.
Синусоидальная широтно-импульсная модуляция.
Другой способ исключения высших гармоник из спектра заключается в модуляции длительности импульсов по синусоидальному закону. Такой способ эффективен при большом числе импульсов на полупериоде основной гармоники.
В течение полупериода цикла преобразования длительность центрального импульса максимальна, а длительность крайних импульсов уменьшается. Такой тип ШИМ называется асимметричным, т.к. длительности управляющих импульсов неодинаковы. Высшие гармонические составляющие в выходном напряжении такого инвертора будут меньше, чем при симметричной широтно-импульсной модуляции.
13. Инверторы. Общие сведения, принцип работы, схемотехника. Автономный трехфазный инвертор. Способы управления.
Инверторы. Общие сведения, принцип работы, схемотехника.
Применение полностью управляемых ключей (транзисторов, запираемых тиристоров и др.) позволяет не только изменять параметры преобразователей, но и создавать новые типы электрических устройств. К последним относятся автономные инверторы, или инверторы с самокоммутацией, — преобразователи постоянного тока в переменный, в которых используются полностью управляемые ключи.
Как уже отмечалось, применение полностью управляемых ключей позволяет не только упростить схемы автономных инверторов, но и значительно повысить качество преобразуемых параметров в преобразователях. Такая возможность реализуется посредством широтно-импульсной модуляции процессов изменения напряжений и токов инвертора. В преобразователях переменного тока применяется ШИМ по синусоидальным или другим требуемым законам изменения основных параметров. В результате обеспечивается синусоидальность (снижение уровня высших гармоник по сравнению с основной гармоникой) напряжения или тока. Кроме того, формирование напряжения требуемого спектрального состава позволяет создавать новые виды силовых электронных устройств — активные и гибридные фильтры. Одновременно со снижением высших гармоник тока (напряжения) ШИМ повышает коэффициент мощности в выпрямителях, инверторах, ведомых сетью, преобразователях частоты и других типах преобразователей.
Классификация инверторов:
1) По способу запирания:
· Ведомые сетью, в таких инверторах запирание силовых ключей происходит в момент подачи на анод отрицательной полуволны входного напряжения.
· Автономные инверторы (АИ), в таких инверторах силовые ключи запираются либо с помощью вспомогательных коммутирующих конденсаторов, либо с помощью управляющих запирающих импульсов от БУИ.
2) По форме выходного напряжения и тока:
· Автономные инверторы напряжения (АИН), в которых форма выходного напряжения не зависит от характера нагрузки, а определяется только последовательностью коммутации силовых ключей
, а форма выходного тока зависит от характера нагрузки.
· Автономные инверторы тока (АИТ), в которых форма выходного тока не зависит от характера нагрузки, а форма выходного напряжения зависит от характера нагрузки.
3) По элементной базе:
· Инверторы на базе тиристоров, область применения таких элементов определяется напряжением питающей сети. Как правило, тиристорные инверторы используют в сетях напряжением 6-10 кВ.
· Транзисторные автономные инверторы, в качестве силовых ключей у них используются биполярные транзисторы. Наиболее современным транзистором является IGBT, область применения которого ограничивается до 6 кВ.
4) По управляемости:
· Автономные инверторы с поочередной коммутацией.
· Автономные инверторы с индивидуальной коммутацией.
5) По виду выпрямителя:
· С управляемым выпрямителем.
· С неуправляемым выпрямителем.
Автономный трехфазный инвертор.
Одним из наиболее простых преобразователей этого типа является автономный инвертор напряжения (АИН). Питание инвертора осуществляется от источника постоянного напряжения. В цепи выпрямленного напряжения инвертора имеется конденсатор. Трехфазный мостовой инвертор содержит шесть транзисторов, каждый из которых зашунтирован обратным диодом. Транзисторы подключены к положительному и отрицательному полюсам конденсатора, а также к фазам нагрузки.
Нагрузка соединена в звезду и подключена прямо к выходным зажимам инвертора без трансформатора, однако, нагрузка может соединяться и в треугольник, а для согласования уровней напряжений инвертора и нагрузки могут использоваться три однофазных либо один трехфазный трансформатор, как и в обычных трехфазных системах переменного напряжения.
Принципиальная электрическая схема трехфазного автономного инвертора напряжения представлена ниже.
Электромагнитные процессы и характеристики инвертора определяются следующими факторами:
-
схемой соединения нагрузки (звезда/треугольник); -
характером нагрузки; -
способом управления.
Способы управления.