Файл: 6 10 вопросы. Заключение по всем генераторам. 87.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 02.02.2024

Просмотров: 652

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Оглавление

2. Назначение, классификация и принцип работы пассивных фильтров. Передаточные функции аналоговых фильтров. Описание LC-фильтров. Сравнение пассивных фильтров с другими видами фильтров.

3. Описание и классификация активных фильтров. Фильтр нижних частот.

4. Описание и классификация активных фильтров. Фильтр верхних частот.

5. Описание и классификация активных фильтров. Полосовые фильтры.

6. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор на основе моста Вина.

7. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор на основе сдвига фаз с одним ОУ.

8. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Буферированный генератор на основе сдвига фаз.

9. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор Буббы.

10. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Квадратурный генератор.

6 – 10 вопросы. Заключение по всем генераторам.

11. Модуляция и разновидности модулированных сигналов. Общие сведения о модуляции. Широтно-импульсная модуляция.

12. Инверторы. Общие сведения, принцип работы, схемотехника. Автономный однофазный инвертор. Полумостовая и мостовая топологии.

13. Инверторы. Общие сведения, принцип работы, схемотехника. Автономный трехфазный инвертор. Способы управления.

14. Принципы автоматического управления. Общие сведения о структурах систем управления. Регуляторы.

15. Электрический ток в вакууме. Вакуумный диод. Вакуумный триод.

16. Ламповый генератор с независимым возбуждением.

17. Ламповый генератор с самовозбуждением.



Тестовый сигнал VTEST подаётся в разорванную петлю и выходное напряжение VOUT измеряется с помощью эквивалентной схемы, изображённой на рисунке.

В начале рассчитывается V+, используя уравнение (6); затем V+ рассматривается как входной сигнал, подаваемый на неинвертирующий усилитель, что даёт Vout из уравнения (7). Подставляя V+ из уравнения (6) в уравнение (7), получаем в уравнении (8) передаточную функцию.







В реальной схеме элементы заменяются для каждого импеданса, и уравнение упрощается. Эти уравнения действительны в случае, если усиление при разомкнутой петле ОС огромно и частота генерации меньше, чем 0.1 ω3dB.

В генераторах на основе сдвига фазы обычно используют отрицательную обратную связь, так что фактор положительной обратной связи (β2) обращается в нуль. В схемах генераторов на основе моста Вина используются и отрицательная (β1) и положительная (β2) обратная связи для достижения режима генерации. Уравнение (8) применяется для детального анализа этой схемы.

Сдвиг фаз в генераторах.




Кварцевые или керамические резонаторы позволяют создавать гораздо более стабильные генераторы, так как у резонаторов отношение dφ/dω гораздо выше из-за их нелинейных свойств. Резонаторы применяют в высокочастотных схемах, в низкочастотных схемах резонаторы не используют из-за их больших размеров, веса и стоимости. Операционные усилители обычно не используют совместно с кварцевыми или керамическими резонаторами, так как ОУ имеют низкую полосу пропускания.


В уравнении Aβ =1∠-180° фазовый сдвиг, равный 180°, вносят активные и пассивные компоненты. Как и любые правильно сконструированные схемы с обратной связью, генераторы зависят от фазового сдвига, вносимого пассивными компонентами, потому что этот фазовый сдвиг точный и почти без дрейфа. Фазовый сдвиг, вносимый активными компонентами сведён к минимуму, поскольку он зависит от температуры, имеет широкий начальный допуск, и зависит от типов активных элементов. Усилители подобраны таким образом, чтобы они вносили минимальный фазовый сдвиг или вообще не вносили никакого фазового сдвига на частоте колебаний. Эти факторы ограничивают рабочий диапазон генераторов на операционных усилителях относительно низкими частотами.


Однозвенные RL или RC цепи вносят фазовый сдвиг величиной до 90° (но не точно 90° - их фазовый сдвиг стремится к 90°, но никогда их не достигнет) на звено, и так как для возникновения колебаний необходим фазовый сдвиг 180°, то нужно использовать хотя бы два звена в конструкции генератора (так как максимальный фазовый сдвиг будет стремиться к 180°, то необходимое дополнение фазового сдвига до точного значения 180° будет обеспечиваться входными ёмкостями и сопротивлениями активных элементов). LC цепь имеет два полюса, и может вносить фазовый сдвиг по 180° на полюс. Но LC и LR генераторы здесь не рассматриваются, так как низкочастотные индуктивности дороги, тяжелы, громоздки и сильно неидеальны. LC генераторы применяются в высокочастотных схемах, за пределами частотного диапазона операционных усилителей, там, где размер, вес и цена индуктивностей менее важны.

Сдвиг по фазе определяет рабочую частоту генерации, поскольку схема будет генерировать колебания на любой частоте, на которой накапливается фазовый сдвиг в 180°. Чувствительность фазы к частоте, dφ/dω, определяет стабильность частоты. Когда буферированные RC звенья (буфер на операционном усилителе обеспечивает высокое входное и низкое выходное сопротивление) включены каскадно, то фазовый сдвиг умножается на количество звеньев, n.

В той области, где фазовый сдвиг равен 180°, частота генерации очень чувствительна к сдвигу фазы. Таким образом, из-за жёстких требований к частоте необходимо, чтобы фазовый сдвиг dφ, изменялся в чрезвычайно узких пределах, что бы изменения частоты dφ были бы незначительными при фазовом сдвиге, равном 180°. Из рисунка видно, что хотя два последовательно соединённых RC звена в конечном итоге обеспечивают фазовый сдвиг почти 180°, величина dφ/dω на частоте генерации недопустимо мала. Следовательно, генератор на основе двух последовательно соединённых RC цепей будет иметь плохую стабильность частоты. Три одинаковых RC фильтра, включённых последовательно, имеют гораздо большее отношение dφ/dω, что даёт в результате улучшение стабильности частоты генератора. Добавление четвёртого RC звена позволяет создать генератор с превосходным отношением dφ/dω, таким образом, это даёт наиболее стабильную по частоте схему RC генератора. Четырёхзвенные RC цепи содержат максимальное число звеньев, которое используют, потому что в одном корпусе микросхемы содержится четыре ОУ, и четырёхкаскадный генератор даёт четыре синусоиды, сдвинутые по фазе, друг относительно друга на 45°. Этот же генератор может быть использован для получения синусоидальных/косинусоидальных, а также квадратурных (т.е. с разницей 90°) сигналов.



Генератор на основе моста Вина.



Существует много типов схем генераторов гармонических сигналов и их модификаций, при практической реализации выбор зависит от частоты и желаемой монотонности выходного сигнала. Основное внимание в этой части будет уделено более известным схемам генераторов: на мосте Вина, на фазовом сдвиге, и квадратурным. Передаточная функция выводится в каждом конкретном случае с помощью методов, описанных ранее.

Генератор на основе моста Вина является одним из наиболее простых и известных, он широко используется в аудио схемах. На рисунке представлена принципиальная электрическая схема генератора. Достоинство этой схемы - малое количество применённых деталей и хорошая стабильность частоты. Основным же её недостатком является то, что амплитуда выходного сигнала приближается к величине питающих напряжений, что приводит к насыщению выходных транзисторов операционного усилителя, и как следствие, является причиной искажений выходного сигнала. Укротить эти искажения гораздо сложнее, чем заставить схему генерировать.

Применение нелинейной обратной связи может минимизировать искажения, присущие базовой схеме генератора на основе моста Вина. Нелинейный компонент, такой как лампа накаливания, можно подставить в схему на место резистора RG, как показано на рисунке. Сопротивление лампы, RLAMP выбрано равным половине сопротивления обратной связи, RF, при токе, протекающим через лампу, зависящим от RF и RLAMP. В момент подачи питающего напряжения на схему лампа ещё холодная и её сопротивление низкое, так что усиление будет большое (больше трёх). По мере протекания тока через нить накала, она нагревается и её сопротивление увеличивается, что приводит к снижению усиления. Нелинейное отношение между протекающим через лампу током и её сопротивлением сохраняет изменение выходного напряжения небольшим - небольшое изменение напряжения означает большое изменение сопротивления. Выходной сигнал этого генератора с искажениями меньше, чем 0.1% для fOSC = 1.57 кГц. Искажения при таких изменениях значительно снижаются по сравнению с базовой схемой генератора, так как выходной каскад ОУ избегает сильного насыщения.


Сопротивление лампы в основном зависит от температуры. Амплитуда выходного сигнала очень чувствительна к температуре и имеет тенденцию к дрейфу. Поэтому коэффициент усиления должен быть больше трёх, чтобы скомпенсировать любые температурные вариации, что приводит к увеличению искажений. Такой тип схемы полезен в случае, если температура изменяется не сильно, или при использовании совместно с со схемой ограничения по амплитуде.

Лампа имеет эффективную низкочастотную тепловую постоянную времени, tthermal. При подходе частоты генерации fOSC к tthermal искажения выходного сигнала сильно возрастают. Для уменьшения искажений можно применить последовательное соединение нескольких ламп, что увеличит tthermal. Недостатки этого способа в том, что время, необходимое для стабилизации колебаний увеличивается и амплитуда выходного сигнала уменьшается.

Анализ работы схемы генератора.

В генераторах на основе моста Вина Z1 = RG, Z2 = RF, Z3 = (R1 + 1/sC1) и Z4 = (R2||1/sC2). Петля разрывается между выходом и Z1, напряжение VTEST подаётся на Z1, и отсюда рассчитывается VOUT.

Напряжение положительной ОС V+, рассчитывается первым, с помощью уравнений (9-11). Уравнение (9) показывает простой делитель напряжения у неинвертирующего входа. Каждый член умножается на (R2C2 s + 1) и делится на R2, что даёт в результате уравнение (10).



Подставляя s = jω0, где jω0 является частотой генерации, jω1 = 1/ R1 C2 и jω2 = 1/R2C1, получаем уравнение (11).



Теперь становятся очевидными некоторые интересные отношения. Конденсатор у нуля, представленный ω1, и конденсатор на полюсе, представленный ω2, должны вносить фазовый сдвиг по 90° каждый, что необходимо для генерации на частоте ω0. Это требует, чтобы C1=C2 и R1=R2. Выбрав ω1 и ω2 равными ω0, все слагаемые с частотами ω в уравнении сократятся, что идеально нейтрализует любое изменение амплитуды с частотой, так как полюса и нули нейтрализуют друг друга. Это приводит к общему коэффициенту обратной связи β = 1/3 (см. выражение 12).




Генератор на мосте Вина с АРУ.



Схема с автоматической регулировкой усиления (АРУ) должна применяться в случае, если ни одна из предыдущих схем не обеспечивает достаточно низкий уровень искажений. Схема типичного генератора с АРУ на мосте Вина изображена на рисунке слева; на рисунке справа показаны осциллограммы этой схемы. АРУ используется для стабилизации амплитуды выходного синусоидального сигнала до оптимальной величины. Полевой транзистор применён в качестве регулирующего элемента АРУ, обеспечивающего превосходное управление из-за широкого диапазона сопротивления сток-исток, которое зависит от напряжения на затворе. Напряжение на затворе транзистора равно нулю, когда подаётся напряжение питания, и соответственно сопротивление сток-исток (RDS) будет низкое. При этом сопротивления RG2+RS+RDS соединяются параллельно с RG1, что повышает коэффициент усиления до 3,05, и схема начинает генерировать колебания, которые постепенно увеличиваются по амплитуде. По мере роста выходного напряжения отрицательная полуволна сигнала открывает диод, и конденсатор C1 начинает заряжаться, что обеспечивает постоянное напряжение на затворе транзистора Q1. Резистор R1 ограничивает ток и устанавливает постоянную времени заряда конденсатора C1 (которая должна быть гораздо больше периода частоты fOSC). Когда коэффициент усиления достигнет трёх, то выходной сигнал стабилизируется. Искажение АРУ составляют менее 0,2%.

Схема на рисунке имеет смещение VREF для однополярного питания. Последовательно с диодом можно включить стабилитрон, чтобы уменьшить амплитуду выходного сигнала и снизить искажения. Можно применить двухполярное питание, для этого надо соединить с общим проводом все проводники, ведущие к VREF. Существует большое разнообразие схем генераторов на основе моста Вина с более точным управлением уровнем выходного сигнала, позволяющих ступенчато переключать частоту генерации или плавно её регулировать. Некоторые схемы используют ограничители на диодах, установленных в качестве нелинейных компонентов обратной связи. Диоды уменьшают искажения выходного сигнала путём мягкого ограничения его напряжения.