ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 02.02.2024
Просмотров: 648
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
3. Описание и классификация активных фильтров. Фильтр нижних частот.
4. Описание и классификация активных фильтров. Фильтр верхних частот.
5. Описание и классификация активных фильтров. Полосовые фильтры.
9. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Генератор Буббы.
6 – 10 вопросы. Заключение по всем генераторам.
14. Принципы автоматического управления. Общие сведения о структурах систем управления. Регуляторы.
15. Электрический ток в вакууме. Вакуумный диод. Вакуумный триод.
Однозвенные RL или RC цепи вносят фазовый сдвиг величиной до 90° (но не точно 90° - их фазовый сдвиг стремится к 90°, но никогда их не достигнет) на звено, и так как для возникновения колебаний необходим фазовый сдвиг 180°, то нужно использовать хотя бы два звена в конструкции генератора (так как максимальный фазовый сдвиг будет стремиться к 180°, то необходимое дополнение фазового сдвига до точного значения 180° будет обеспечиваться входными ёмкостями и сопротивлениями активных элементов). LC цепь имеет два полюса, и может вносить фазовый сдвиг по 180° на полюс. Но LC и LR генераторы здесь не рассматриваются, так как низкочастотные индуктивности дороги, тяжелы, громоздки и сильно неидеальны. LC генераторы применяются в высокочастотных схемах, за пределами частотного диапазона операционных усилителей, там, где размер, вес и цена индуктивностей менее важны.
Сдвиг по фазе определяет рабочую частоту генерации, поскольку схема будет генерировать колебания на любой частоте, на которой накапливается фазовый сдвиг в 180°. Чувствительность фазы к частоте, dφ/dω, определяет стабильность частоты. Когда буферированные RC звенья (буфер на операционном усилителе обеспечивает высокое входное и низкое выходное сопротивление) включены каскадно, то фазовый сдвиг умножается на количество звеньев, n.
В той области, где фазовый сдвиг равен 180°, частота генерации очень чувствительна к сдвигу фазы. Таким образом, из-за жёстких требований к частоте необходимо, чтобы фазовый сдвиг dφ, изменялся в чрезвычайно узких пределах, что бы изменения частоты dφ были бы незначительными при фазовом сдвиге, равном 180°. Из рисунка видно, что хотя два последовательно соединённых RC звена в конечном итоге обеспечивают фазовый сдвиг почти 180°, величина dφ/dω на частоте генерации недопустимо мала. Следовательно, генератор на основе двух последовательно соединённых RC цепей будет иметь плохую стабильность частоты. Три одинаковых RC фильтра, включённых последовательно, имеют гораздо большее отношение dφ/dω, что даёт в результате улучшение стабильности частоты генератора. Добавление четвёртого RC звена позволяет создать генератор с превосходным отношением dφ/dω, таким образом, это даёт наиболее стабильную по частоте схему RC генератора. Четырёхзвенные RC цепи содержат максимальное число звеньев, которое используют, потому что в одном корпусе микросхемы содержится четыре ОУ, и четырёхкаскадный генератор даёт четыре синусоиды, сдвинутые по фазе, друг относительно друга на 45°. Этот же генератор может быть использован для получения синусоидальных/косинусоидальных, а также квадратурных (т.е. с разницей 90°) сигналов.
Генератор на основе сдвига фаз с одним ОУ.
Генераторы на основе сдвига фаз производят меньше искажений, чем генераторы на основе моста Вина, имея ещё и хорошую стабильность частоты. Такой генератор может быть построен с одним ОУ, как показано на рисунке. Три RC звена соединены последовательно, чтобы получить крутой наклон dφ/dω, необходимый для стабильной частоты колебаний, как это описано в предыдущей лекции. Применение меньшего количества RC звеньев приводит к высокой частоте колебаний, ограниченной полосой пропускания ОУ.
Как правило, считается, что фазосдвигающие цепи являются независимыми друг от друга, что позволяет вывести уравнение (1). Полный сдвиг фазы петли ОС составляет –180°, при этом фазовый сдвиг, вносимый каждым звеном, составляет –60°. Это происходит при ω = 2πf = 1.732/RC (tan 60° = 1.732...). Величина β в этой точке будет равна (1/2)3, так что усиление, A, должно быть равно 8, что бы общее усиление было равно единице.
Частота колебаний с номиналами компонентов, показанных на рисунке, составляет 3,767 кГц, а расчётная частота составляет 2,76 кГц. Кроме того, коэффициент усиления, требуемый для возникновения генерации, равен 27, а расчётный равен 8. Это расхождение частично возникает из-за разброса параметров компонентов, однако главным фактором является неверное предположение, что RC звенья не нагружают друг друга. Эта схема была очень популярна, когда активные компоненты были большими и дорогими. Но теперь ОУ недороги, малы, и в одном корпусе содержится 4 ОУ, поэтому генератор на основе фазосдвигающей цепи на одном операционном усилители теряет популярность. Искажения выходного сигнала составляют 0,46%, что значительно меньше, чем в схеме генератора на основе моста Вина без стабилизации амплитуды.
8. Генераторы гармонических сигналов. Теоретические сведения. Принцип работы. Буферированный генератор на основе сдвига фаз.
Генераторы гармонических сигналов. Теоретические сведения.
Генераторами являются такие схемы, которые производят периодические колебания различных форм, например, прямоугольные, треугольные, пилообразные и синусоидальные. В генераторах обычно применяются различные активные компоненты, лампы или кварцевые резонаторы, а также пассивные - резисторы, конденсаторы, индуктивности.
Существует два основных класса генераторов - релаксационные и гармонические.
Релаксационные генераторы производят треугольные, пилообразные и другие несинусоидальные сигналы, и в этой лекции они не рассматриваются. Синусоидальные генераторы состоят из усилителей со внешними компонентами, или же компоненты могут быть смонтированы на одном кристалле с усилителем.
В этой лекции рассматриваются генераторы гармонических сигналов, созданные на основе операционных усилителей. Генераторы гармонического сигнала применяются в качестве образцовых или испытательных генераторов во многих схемах. В чистом синусоидальном сигнале присутствует только основная частота - в идеале в нём нет никаких других гармоник. Таким образом, подавая синусоидальный сигнал на вход какого-нибудь устройства, можно измерить уровень гармоник на его выходе, определив таким образом коэффициент нелинейных искажений. В релаксационных генераторах выходной сигнал формируется из синусоидального сигнала, который суммируется для формирования колебаний специальной формы.
Генераторы на операционных усилителях являются нестабильными схемами - не в том смысле, что они случайно получились нестабильными - а наоборот, их специально конструируют так, чтобы они оставались в нестабильном состоянии или в состоянии генерации. Генераторы бывают полезны для генерации стандартных сигналов, используемых как образцовые для применения в областях, связанных с аудио, в качестве функциональных генераторов, в цифровых системах и в системах связи.
Генераторы на операционных усилителях ограничены низкочастотным диапазоном частотного спектра, так как у них отсутствует широкая полоса пропускания, необходимая для достижения низкого фазового сдвига на высоких частотах. Операционные усилители с обратной связью по напряжению ограничены килогерцовым частотным диапазоном, так как доминирующий полюс при разомкнутой цепи обратной связи может находиться на достаточно низкой частоте, например 10 Гц. Новые операционные усилители с токовой связью имеют гораздо большую полосу пропускания, но их очень трудно использовать в генераторных схемах, потому что они чувствительны к ёмкостям в цепях обратной связи. Генераторы с кварцевыми резонаторами используются для применения в высокочастотных схемах в диапазоне до сотен МГц.
Принцип работы.
Для демонстрации условий возникновения колебаний (генерации) используется классическое изображение системы с отрицательной обратной связью. Ниже изображена блочная схема этой системы, где VIN - напряжение входного сигнала, VOUT - напряжение на выходе блока усилителя (A), β - сигнал, называемый коэффициентом обратной связи, который подаётся обратно на сумматор. E представляет ошибку, равную сумме коэффициента обратной связи и входного напряжения.
Соответствующие классические выражения для системы обратной связи выводятся следующим образом. Уравнение (1) является определяющим уравнением для выходного напряжения; уравнение (2) - для соответствующей ошибки.
Выразив первое уравнение через E и подставив его во второе, получим выражение (3).
Группируя VOUT в одной части равенства, получим выражение (4).
Переставляя местами члены равенства, получим уравнение (5) – классическую форму описания обратной связи.
Генераторы не требуют никакого внешнего сигнала для своей работы, вместо этого они используют некоторую часть выходного сигнала, подаваемого обратно на вход через цепь обратной связи.
Колебания в генераторах возникают от того, что системе обратной связи не удаётся найти стабильное состояние, потому что условие передаточной функции не может быть выполнено. Система становится неустойчивой, когда знаменатель в уравнении (5) обращается в нуль, т.е. когда 1 + Aβ = 0, или Aβ = -1. Ключом к созданию генератора является выполнение условия Aβ = -1. Это так называемый критерий Баркгаузена.
Для удовлетворения этого критерия необходимо
, что бы величина усиления цепи обратной связи совпадала по фазе с соответствующим фазовым сдвигом, равным 180°, на что указывает знак "минус". Эквивалентное выражение с использованием символики комплексной алгебры будет Aβ =1∠-180° для отрицательной системы обратной связи. Для положительной системы обратной связи выражение будет выглядеть как Aβ =1∠-0° и знак слагаемого Aβ в уравнении (5) будет отрицательным.
По мере того, как сдвиг фаз приближается к 180°, и |Aβ| --> 1, выходное напряжение теперь уже неустойчивой системы стремится к бесконечности, но оно, конечно же, ограничено конечными значениями из-за ограничения напряжения источника питания. Когда амплитуда выходного напряжения достигает величины какого-либо из питающих напряжений, то активные устройства в усилителях изменяют коэффициент усиления. Это приводит к тому, что величина A изменяется, и так же приводит к удалению Aβ от бесконечности и, таким образом траектория изменения напряжения в направлении бесконечности замедляется и в конце концов останавливается. На данном этапе может произойти одно из трёх событий:
I. Нелинейности в режиме насыщения или отсечки приводят систему в устойчивое состояние и удерживают выходное напряжение вблизи напряжения источника питания.
II. Начальные изменения приводят систему в режим насыщение (или в режим отсечки) и система остаётся в этом состоянии долгое время, прежде чем она становится линейной и выходное напряжение начинает изменяться по направлению к противоположному источнику питания.
III. Система остаётся линейной и меняет направление изменения выходного напряжения в сторону к противоположному источнику питания.
Второй вариант даёт сильно искажённые колебания (как правило, почти прямоугольной формы), такие генераторы называют релаксационными. Третий вариант производит синусоидальный сигнал.
Анализ работы схемы генератора.
При создании генераторов различными способами комбинируют положительную и отрицательную обратные связи.
На рисунке изображена базовая схема усилителя с отрицательной обратной связью (ОС) и с добавленной положительной ОС. Когда применяются и положительная, и отрицательная ОС, то их усиления комбинируются в одно общее (усиление замкнутой петли ОС).
Данную схему можно упростить до схемы с положительной ОС, тогда последующий анализ упрощается, т.к. при использовании отрицательной ОС положительная петля ОС игнорируется.