ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 15.03.2024
Просмотров: 775
Скачиваний: 0
СОДЕРЖАНИЕ
1. ОБЩАЯ ХАРАКТЕРИСТИКА НЕФТЯНОЙ ЗАЛЕЖИ
1.1. Понятие о нефтяной залежи
1.2. Механизм использования пластовой энергии при добыче нефти
2. ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ
2.2. Приток жидкости к скважине
2.3. Режимы разработки нефтяных месторождений
3. ТЕХНОЛОГИЯ И ТЕХНИКА ВОЗДЕЙСТВИЯ НА ЗАЛЕЖЬ НЕФТИ
3.1. Цели и методы воздействия
3.2. Технология поддержания пластового давления закачкой воды
3.3. Основные характеристики поддержания пластового давления закачкой воды
3.5. Техника поддержания давления закачкой воды
3.6. Оборудование кустовых насосных станций
3.7. Технология и техника использования глубинных вод для ППД
3.8. Поддержание пластового давления закачкой газа
3.9. Методы теплового воздействия на пласт
3.10. Техника закачки теплоносителя в пласт
4. ПОДГОТОВКА СКВАЖИН К ЭКСПЛУАТАЦИИ
4.1. Конструкция оборудования забоев скважин
4.2. Приток жидкости к перфорированной скважине
4.3. Техника перфорации скважин
4.5. Методы освоения нефтяных скважин
4.6. Передвижные компрессорные установки
4.7. Освоение нагнетательных скважин
5. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ
5.1. Назначение методов и их общая характеристика
5.2. Обработка скважин соляной кислотой
5.4. Поинтервальная или ступенчатая СКО
5.5. Кислотные обработки терригенных коллекторов
5.6. Техника и технология кислотных обработок скважин
5.7. Гидравлический разрыв пласта
5.8. Осуществление гидравлического разрыва
5.9. Техника для гидроразрыва пласта
5.10. Тепловая обработка призабойной зоны скважины
5.11. Термогазохимическое воздействие на призабойную зону скважины
5.12. Другие методы воздействия на призабойную зону скважин
6.1. Назначение и методы исследования скважин
6.2. Исследование скважин при установившихся режимах
6.3. Исследование скважин при неустановившихся режимах
6.4. Термодинамические исследования скважин
6.5. Скважинные дебитометрические исследования
6.6. Техника и приборы для гидродинамических исследований скважин
7. ОСНОВЫ ТЕОРИИ ПОДЪЕМА ЖИДКОСТИ В СКВАЖИНЕ
7.1. Физика процесса движения газожидкостной смеси в вертикальной трубе
7.2. Уравнение баланса давлений
7.3. Плотность газожидкостной смеси
8. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН
8.1. Артезианское фонтанирование
8. 2. Фонтанирование за счет энергии газа
8. 4. Расчет фонтанного подъемника
8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
8. 6. Оборудование фонтанных скважин
8. 7. Регулирование работы фонтанных скважин
8. 8. Осложнения в работе фонтанных скважин и их предупреждение
9. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН
9.1. Общие принципы газлифтной эксплуатации
9.2. Конструкции газлифтных подъемников
9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
9.4. Методы снижения пусковых давлений
9.6. Принципы размещения клапанов
9.7. Принципы расчета режима работы газлифта
9.9. Системы газоснабжения и газораспределения
9.11. Исследование газлифтных скважин
10. ЭКСПЛУАТАЦИЯ СКВАЖИН ШТАНГОВЫМИ НАСОСАМИ
10.1. Общая схема штанговой насосной установки, ее элементы и назначение
10.2. Подача штангового скважинного насоса и коэффициент подачи
10.3. Факторы, снижающие подачу ШСН
10.4. Оборудование штанговых насосных скважин
10.5. Исследование скважин, оборудованных штанговыми насосными установками
10.6. Эксплуатация скважин штанговыми насосами в осложненных условиях
11. эксплуатация скважин погружными центробежными электронасосами
11.1. Общая схема установки погружного центробежного электронасоса
11.2. Погружной насосный агрегат
11.3. Элементы электрооборудования установки
11.4. Установка ПЦЭН специального назначения
11.5. Определение глубины подвески ПЦЭН
11.6. Определение глубины подвески ПЦЭН c помощью кривых распределения давления
12.1. Принцип действия гидропоршневого насоса
12.2. Подача ГПН и рабочее давление
14. РАЗДЕЛЬНАЯ ЭКСПЛУАТАЦИЯ ПЛАСТОВ ОДНОЙ СКВАЖИНОЙ
14.2. Некоторые схемы оборудования скважин для раздельной эксплуатации пластов
14.3. Раздельная закачка воды в два пласта через одну скважину
15.3. Технология текущего ремонта скважин
15.4. Капитальный ремонт скважин
15.5. Новая технология ремонтных работ на скважинах
16. ЭКСПЛУАТАЦИЯ ГАЗОВЫХ СКВАЖИН
16.1. Особенности конструкций газовых скважин
16.2. Оборудование устья газовой скважины
16.3. Подземное оборудование ствола газовых скважин при добыче природного газа различного состава
16.4. Оборудование забоя газовых скважин
16.5. Расчет внутреннего диаметра и глубины спуска колонны НКТ в скважину
16.6. Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
16.7. Одновременная раздельная эксплуатация двух газовых пластов одной скважиной
5.11. Термогазохимическое воздействие на призабойную зону скважины
Термогазохимическое воздействие на призабойную зону скважины (ТГХВ) заключается в сжигании на забое скважины порохового заряда, спускаемого на электрокабеле. Время его сгорания регулируется н может длиться от нескольких минут до долей секунды. В соответствии с этим изменяется и газоприток, т. е. скорость выделения газа при сгорании пороха, что определяет давление и температуру в зоне горения. Кроме того, интенсивность процесса регулируется и количеством сжигаемого наряда, которое может изменяться от 20 до 500 кг.
При сгорании порохового заряда специального состава и образовании газов происходит быстрое нарастание давления и температуры в зоне горения. При быстром его сгорании давление на забое достигает 30 - 100 МПа, так как столб жидкости в скважине играет роль уплотнительного поршня, который не успевает быстро сдвинуться с места благодаря своей инерции. При таком быстром процессе горения (доли секунды) осуществляется механическое воздействие на пласт, приводящее к образованию в нем новых трещин и к расширению существующих. Такое воздействие аналогично гидроразрыву пласта, но без закрепления образовавшихся трещин наполнителем.
При медленном горении пороховых газов на забое скважины создается высокая температура (до 350 °С), так как на фронте горения заряда она достигает 3500 °С. В результате происходит прогрев призабойной зоны скважины. Нагретые пороховые газы проникают по порам и трещинам в глубь пласта, расплавляют смолы, асфальтены и парафины, выпавшие в призабойной зоне в процессе эксплуатации скважины. Такое воздействие аналогично термическому воздействию на пласт.
При горении заряда образуется большое количество газообразных продуктов горения, состоящих главным образом из углекислого газа, который, растворяясь в нефти, снижает ее вязкость н поверхностное натяжение на границе с водой и породой. Это способствует повышению продуктивности скважины. Для усиления химического воздействия на карбонатные коллекторы пороховой заряд целесообразно сжигать в растворе соляной кислоты, предварительно закачанной в скважину.
Для ТГХВ разработаны специальные аппараты, спускаемые на бронированном кабеле в скважину. Эти аппараты получили название аккумуляторов давления скважинных (АДС-5, АДС-6). Иногда их называют пороховыми генераторами давления (ПГД). Аккумуляторы
давления инициируются электрическими воспламенителями, которые в отличие от пороховых шашек имеют проволочную спираль, нагреваемую электрическим током.
Аппарат АДС-5 предназначен преимущественно для прогрева пласта, а аппарат АДС-6 для гидроразрыва пласта. Их принципиальное отличие состоит в различной величине поверхности горения порохового заряда. Выбор соответствующей модели АДС и количества сгорающих элементов зависит от геологотехнических характеристик скважины и схемы обработки в каждом конкретном случае.
При необходимости прогрева пласта в скважину опускают снаряд АДС-5 и устанавливают на забой, если расстояние забоя от нижних дыр перфорации скважины не превышает 2 - 3 м. В противном случае делают на забое песчаную подушку. Заряд воспламеняют подачей электрического напряжения по кабелю на спираль накаливания. Горение начинается с верхнего торца порохового заряда, так как распространению горения на боковую поверхность препятствует жидкость, находящаяся в скважине. После сгорания первой шашки, снабженной воспламенителем, горение передается по специальному каналу следующей шашке н т. д. Полное время сгорания заряда в снаряде АДС-5 при давлении 5 МПа и при воспламенении заряда только с одного верхнего торца первой шашки может достигать 200 с. Поэтому давление на забое скважины возрастает постепенно и не приводит к гидроразрыву пласта, зато в месте установки заряда температура достигает 350 °С, что приводит к удалению твердых отложений в призабойной зоне и частичному разрушению твердого скелета пласта.
Схема ТГХВ для разрыва пласта в нефтяных или нагнетательных скважинах отличается от описанной тем, что на кабеле спускают снаряд АДС-6, состоящий из нескольких пороховых шашек, соединенных вместе в длинную гирлянду со сквозным внутренним каналом. В верхнем торце верхней шашки и в нижнем торце нижней шашки имеются электрические спирали-воспламенители. Для сокращения продолжительности горения, т. е. для увеличения поверхности горения: такой воспламенитель может устанавливаться п в средней части заряда. При наличии внешнего давления стандартный снаряд АДС-6 сгорает за 3,3 с. Сравнительно быстрое сгорание порохового заряда в скважине позволяет создавать необходимые для ГРП давления без использования пакера, роль которого в этом случае выполняет столб жидкости. При быстром сжигании заряда не исключается тепловое и химическое воздействие на призабойную зону скважины. Применение ТГХВ в нефтяных и нагнетательных скважинах как в карбонатных, так и в терригенных коллекторах показывает высокую эффективность этого метода, составляющую свыше 70%. Продолжительность работы скважины с повышенным дебитом или приемистостью составляет от двух месяцев до двух лет.
По данным нефтедобывающих объединений Средней Волги на одну обработку ТГХВ в среднем расходуется 80 кг порохового состава, а дополнительная добыча нефти составляет 9 т/кг, дополнительная закачка воды - 418 м3/кг. Это достаточно высокие показатели, учитывая простоту и сравнительную дешевизну операции. Однако эти показатели резко ухудшаются или даже могут быть отрицательными при неправильном выборе скважины для обработки или нарушениии технологии подготовительных работ. Опыт показал, что при глушении скважины водой или глинистым раствором перед обработкой эффективность обработки резко снижается. Нецелесообразно применение ТГХВ в скважинах с низким пластовым давлением в истощенных коллекторах. При быстром сгорании заряда иногда происходят выбросы жидкости, прихваты кабеля и разрывы обсадной колонны. Для предупреждения таких явлений необходимо держать уровень жидкости ниже устья примерно на 50м, а устье герметизировать специальным сальником. В таком случае пространство над уровнем выполняет роль амортизатора или воздушного компенсатора.
В нагнетательных скважинах часто не удается понизить уровень. Тогда происходят переливы с большей или меньшей интенсивностью. В таких случаях на устье устанавливают сальник, через который пропускают кабель, а боковые отводы арматуры устья оставляют открытыми на случай выброса. Хорошие результаты в пластах с низкой проницаемостью достигнуты при ступенчатой обработке, когда сжигание большого количества пороха опасно. Ступенчатые обработки производят с постоянным увеличением массы порохового состава н не ранее чем через 2 ч после предыдущей обработки, поскольку из-за повышенной температуры в скважине может произойти преждевременное воспламенение заряда. Известны случаи, когда горящий пороховой снаряд под действием собственного веса и реактивных сил, создаваемых струями горячих газов, отрывается от кабеля, падает в зумпф на забой скважины и там догорает, не оказывая должного воздействия на интервал перфорации. Для исключения подобных явлений целесообразно делать непосредственно ниже интервала перфорации искусственный забой намывом песка или созданием цементной пробки.
Конструкция снарядов, спускаеуых в скважины для ТГХВ, изменялась и совершенствовалась. Первоначально это были корпусные аппараты с пороховым зарядом, который воспламеняется от электрической спирали. Сгорание порохового заряда сопровождается выделением газов с интенсивностью 1000 - 1500 л/с. Прочный корпус, в котором происходит горение, имеет в верхней и нижней частях штуцеры для регулировки скорости истечения газов в скважину.
Давление газов в камере к концу горения достигает 110 МПа. Масса аппарата 160 кг. Корпус аппарата вместе с кабельной головкой выдерживает до 20 операций.
В последнее время появились бескорпусные аппараты, состоящие по существу из одной кабельной головки и гирлянды пороховых шашек. Примером такого аппарата может служить пороховой генератор давления бескорпусный ПГД-БК (рис. 5.12). В кабельном наконечнике 1 закрепляется конец кабеля, который присоединяется к воспламенителю 6. Пороховые шашки 5, покрытые снаружи оболочкой, соединяются друг с другом резьбовыми муфтами 2, образующими во всех шашках сквозную вертикальную трубку. Внутри трубок имеется заряд 3, который инициирует горение пороха 5 в каждой шашке (секции).
Рис. 5.12. Пороховой генератор давления бескорпусный (ПГД-БК)
для термогазохимической обработки забоя скважины.
Свинчивая вместе несколько шашек 5, можно изменять интенсивность горения и процесса в целом. После сгорания пороха на кабеле остаются кабельный наконечник 7, головка аппарата 4 и соединительная трубка 2, которые используются повторно. Остальные детали снаряда сгорают. Операция по термогазохнмпче-скому воздействию на забой скважины очень проста. На ее осуществление затрачивают 2 - 3 ч времени, тогда как на обычный гидроразрыв тратится 2 - 3 сут. Это один из эффективных способов воздействия на ПЗП для интенсификации притока.
5.12. Другие методы воздействия на призабойную зону скважин
Кроме описанных основных методов воздействия на ПЗС существуют другие менее распространенные вследствие своей низкой эффективности либо проходящие промышленные испытания и находящиеся в стадии изучения. К ним следует отнести: торпедирование скважин; виброобработку забоев скважин: электрогидравлическое воздействие на ПЗС.
Торпедирование применяется, как правило, в крепких породах для создания в ПЗС сети искусственных трещин с целью увеличения продуктивности добывающих и приемистости нагнетательных скважин. Торпедирование, кроме того, широко применяется и при ремонтных работах в скважинах. Существует большое число конструкций торпед в зависимости от целей их использования:
а) торпеды кумулятивные осевые ТКО для создания направленного взрыва вдоль какой-либо оси или вдоль горизонтальной плоскости. Они используются главным образом при ремонтных работах для отрыва прихваченных труб или колонн путем взрыва, сфокусированного, например, в горизонтальной плоскости. Такая торпеда предназначена для ремонтных работ, для разрушения посторонних предметов в скважине;
б) торпеды из детонирующего шнура ТДШ для развинчивания колонн в заданном месте, встряхивания прихваченных осевшим песком труб, очистки фильтров и поверхности пласта без повреждения обсадной колонны и создания трещин в породе. В этих торпедах используется детонирующий шнур, содержащий в водонепроницаемой оболочке примерно 13 г взрывчатого вещества (ВВ) на каждый 1 м длины шнура. Причем длина заряда (длина шнура) может достигать 100 м. В ряде случаев на поверхности пласта и фильтра наблюдается отложение солей, продуктов коррозии и доугих твердых осадков, мешающих нормальному притоку жидкости из пласта в скважину. В таких случаях использование ТДШ дает хороший эффект, без повреждения элементов конструкции скважины. В скважинах с открытым забоем используются торпеды с детонирующими шнурами, имеющими плотность ВВ более 13 г/м. Шнурковые торпеды могут быть использованы и для очистки ПЗС нагнетательных скважин;
в) фугасные торпеды, как правило, большой мощности, несущие в себе до 5 - 7 кг ВВ в виде шашек.