ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 15.03.2024
Просмотров: 942
Скачиваний: 0
СОДЕРЖАНИЕ
1. ОБЩАЯ ХАРАКТЕРИСТИКА НЕФТЯНОЙ ЗАЛЕЖИ
1.1. Понятие о нефтяной залежи
1.2. Механизм использования пластовой энергии при добыче нефти
2. ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ
2.2. Приток жидкости к скважине
2.3. Режимы разработки нефтяных месторождений
3. ТЕХНОЛОГИЯ И ТЕХНИКА ВОЗДЕЙСТВИЯ НА ЗАЛЕЖЬ НЕФТИ
3.1. Цели и методы воздействия
3.2. Технология поддержания пластового давления закачкой воды
3.3. Основные характеристики поддержания пластового давления закачкой воды
3.5. Техника поддержания давления закачкой воды
3.6. Оборудование кустовых насосных станций
3.7. Технология и техника использования глубинных вод для ППД
3.8. Поддержание пластового давления закачкой газа
3.9. Методы теплового воздействия на пласт
3.10. Техника закачки теплоносителя в пласт
4. ПОДГОТОВКА СКВАЖИН К ЭКСПЛУАТАЦИИ
4.1. Конструкция оборудования забоев скважин
4.2. Приток жидкости к перфорированной скважине
4.3. Техника перфорации скважин
4.5. Методы освоения нефтяных скважин
4.6. Передвижные компрессорные установки
4.7. Освоение нагнетательных скважин
5. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ
5.1. Назначение методов и их общая характеристика
5.2. Обработка скважин соляной кислотой
5.4. Поинтервальная или ступенчатая СКО
5.5. Кислотные обработки терригенных коллекторов
5.6. Техника и технология кислотных обработок скважин
5.7. Гидравлический разрыв пласта
5.8. Осуществление гидравлического разрыва
5.9. Техника для гидроразрыва пласта
5.10. Тепловая обработка призабойной зоны скважины
5.11. Термогазохимическое воздействие на призабойную зону скважины
5.12. Другие методы воздействия на призабойную зону скважин
6.1. Назначение и методы исследования скважин
6.2. Исследование скважин при установившихся режимах
6.3. Исследование скважин при неустановившихся режимах
6.4. Термодинамические исследования скважин
6.5. Скважинные дебитометрические исследования
6.6. Техника и приборы для гидродинамических исследований скважин
7. ОСНОВЫ ТЕОРИИ ПОДЪЕМА ЖИДКОСТИ В СКВАЖИНЕ
7.1. Физика процесса движения газожидкостной смеси в вертикальной трубе
7.2. Уравнение баланса давлений
7.3. Плотность газожидкостной смеси
8. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН
8.1. Артезианское фонтанирование
8. 2. Фонтанирование за счет энергии газа
8. 4. Расчет фонтанного подъемника
8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
8. 6. Оборудование фонтанных скважин
8. 7. Регулирование работы фонтанных скважин
8. 8. Осложнения в работе фонтанных скважин и их предупреждение
9. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН
9.1. Общие принципы газлифтной эксплуатации
9.2. Конструкции газлифтных подъемников
9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
9.4. Методы снижения пусковых давлений
9.6. Принципы размещения клапанов
9.7. Принципы расчета режима работы газлифта
9.9. Системы газоснабжения и газораспределения
9.11. Исследование газлифтных скважин
10. ЭКСПЛУАТАЦИЯ СКВАЖИН ШТАНГОВЫМИ НАСОСАМИ
10.1. Общая схема штанговой насосной установки, ее элементы и назначение
10.2. Подача штангового скважинного насоса и коэффициент подачи
10.3. Факторы, снижающие подачу ШСН
10.4. Оборудование штанговых насосных скважин
10.5. Исследование скважин, оборудованных штанговыми насосными установками
10.6. Эксплуатация скважин штанговыми насосами в осложненных условиях
11. эксплуатация скважин погружными центробежными электронасосами
11.1. Общая схема установки погружного центробежного электронасоса
11.2. Погружной насосный агрегат
11.3. Элементы электрооборудования установки
11.4. Установка ПЦЭН специального назначения
11.5. Определение глубины подвески ПЦЭН
11.6. Определение глубины подвески ПЦЭН c помощью кривых распределения давления
12.1. Принцип действия гидропоршневого насоса
12.2. Подача ГПН и рабочее давление
14. РАЗДЕЛЬНАЯ ЭКСПЛУАТАЦИЯ ПЛАСТОВ ОДНОЙ СКВАЖИНОЙ
14.2. Некоторые схемы оборудования скважин для раздельной эксплуатации пластов
14.3. Раздельная закачка воды в два пласта через одну скважину
15.3. Технология текущего ремонта скважин
15.4. Капитальный ремонт скважин
15.5. Новая технология ремонтных работ на скважинах
16. ЭКСПЛУАТАЦИЯ ГАЗОВЫХ СКВАЖИН
16.1. Особенности конструкций газовых скважин
16.2. Оборудование устья газовой скважины
16.3. Подземное оборудование ствола газовых скважин при добыче природного газа различного состава
16.4. Оборудование забоя газовых скважин
16.5. Расчет внутреннего диаметра и глубины спуска колонны НКТ в скважину
16.6. Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
16.7. Одновременная раздельная эксплуатация двух газовых пластов одной скважиной
16.4. Оборудование забоя газовых скважин
Оборудование забоя газовых скважин зависит от многих факторов:
-
1) литологического и фациального составов пород и цементирующего материала, слагающих газовмещающий коллектор; -
2) механической прочности пород; -
3) неоднородности коллекторских свойств пласта по разрезу; -
4) наличия газоносных, нефтеносных и водоносных пластов в продуктивном разрезе; -
5) местоположения скважины на структуре и площади газоносности; -
6) назначения скважины (добывающая, нагнетательная, наблюдательная).
В тех случаях, когда газовая залежь пластового или массивного типа, газонасыщенный коллектор представлен крепкими породами (сцементированными песками, известняками, доломитами, ангидритами), в продуктивном разрезе отсутствуют нефтенасыщенные и водонасыщенные горизонты, добывающие скважины могут иметь открытый забой. Для улучшения выноса твердых частиц и жидкостей с забоя скважины в фильтровую часть пласта на забой скважины спускается хвостовик (см. рис. 16.9). Во многих случаях, когда газонасыщенный пласт представлен слабосцементированными породами, в продуктивном разрезе отсутствуют нефте-и водонасыщенные пропластки, открытый забой скважин оборудуется сетчатыми, керамическими, металлокерамическими, гравийными, стеклопластиковыми фильтрами различных типов или рыхлые породы призабойной зоны пласта укрепляются вяжущими веществами.
Наибольшее распространение в последнее время, особенно при оборудовании забоя скважин, расположенных в рыхлых песчаных пластах на ПХГ, получают намывные гравийные фильтры. В этом случае с помощью специальных гидравлических расширителей увеличивается диаметр зоны пласта, в которой намечается намывка гравия, например со 146 до 256 мм. Диаметр образованной зоны определяют с помощью каверномера. После расширения зоны намывки гравия в скважину спускают на НКТ забойное оборудование фильтра (рис. 16.10). Фильтровая часть узла забойного оборудования представляет собой трубу диаметром 100 мм, длиной 10,6 м, перфорированную круглыми отверстиями диаметром 10 - 12 мм, общая площадь которых составляет 15 - 20 % площади боковой поверхности трубы. Труба обматывается сеткой галунного плетения № 18,
Рис. 16.10. Схема оборудования забоя газовых скважин в рыхлых горных породах
на подземных хранилищах газа: 1 - бурильные штанги диаметром 60,3 мм; 2 - переводник
с левой резьбой; 3 - обсадная колонна диаметром 146 мм; 4 - интервал ствола скважины, расширенной
до 256 мм; 5 - гравий; 6 - щелевой фильтр; 7 - труба диаметром 50 мм; 8, 9 - клапан обратной и прямой циркуляции соответственно; 10 - хвостовик диаметром 62,7 мм; 11 – забой
Рис. 16.11. Принципиальная схема намыва гравийного фильтра в скважине подземного хранилища газа:
1 - обсадная колонна диаметром 146 мм; 2 - противовыбросовая головка; 3 - манометр; 4 - соединительные трубы; 5 - кран, регулирующий подачу гравия; 6 - бункер для гравия, 7 - цементировочный агрегат; 8 - емкости с водой
проволокой из нержавеющей стали или капронового волокна с зазорами 0,5 - 1 мм между витками. В нижней части фильтра имеется клапанная коробка с клапанами для осуществления прямой и обратной промывки скважины. Ниже клапанной коробки фильтра находится хвостовик из НКТ диаметром 62,7 мм, длиной 19 м. Выше фильтра устанавливается затвор из 100-мм НКТ длиной 13 м.
На рис. 16.11 изображена принципиальная схема намыва гравийного фильтра в скважине ПХГ. Перед намывом гравия со средним диаметром частиц, равным 1 мм, проводится прямая и обратная промывка скважины. После полного вытеснения глинистого раствора водой начинается закачка гравия в расширенную часть
Рис. 16.12. Схема оборудования скважины и обвязки агрегатов при закачке смолообразующих
реагентов в призабойную зону пласта: 1 - агрегат, подающий раствор сырых фенолов и щелочи;
2 - агрегат, подающий воду для продавки смолы в пласт; 3 - агрегат, подающий формалин; 4 - тройник-смеситель; 5 - заливочная головка; 6 - заливочные трубы диаметром 50 - 75 мм; 7 - пакер
пласта. Качество намыва гравия определяется по уменьшению массы колонны труб в скважине. После намыва гравия пласт испытывается на вынос песка. Для уменьшения проявления арочного эффекта, возможного образования пустот в гравийном массиве и выноса частиц пласта в скважину через эти пустоты рекомендуется увеличивать зазор между надфильтровой трубой и обсадной колонной скважины.
Призабойная зона пласта в рыхлых коллекторах может укрепляться закачкой в поровое пространство жидких вяжущих веществ - органических полимерных материалов, которые при взаимодействии с катализатором полимеризации затвердевают и цементируют рыхлую породу. В качестве вяжущих химических веществ, в зависимости от температуры и минералогического состава пласта-коллектора, используют: 1) органические смолы; 2) пластмассы; 3) специальные составы типа «перматрол».
В качестве органических смол применяются эпоксидная, фе-нолформальдегидная, карбамидная (крепитель М), смолы из сырых фенолов и формалина, РР-1. На рис. 16.12 изображена схема оборудования скважины и обвязки агрегатов при закачке смолообразующих реагентов в призабойную зону пласта. Исходными реагентами для получения смолы служат сырые фенолы и формалин. В качестве катализатора полимеризации применяется едкий натр. Работа по обработке скважины проводится в следующем порядке.
1. В скважине определяют глубину забоя, температуру пласта, удаляют песчаную пробку, исследуют поглотительную способность.
2. Спускают в скважину заливочные трубы 6 диаметром 50 или 76 мм. Кольцевое пространство между обсадной колонной и заливочными трубами герметизируется пакером 7.
3. Устье скважины оборудуется заливочной головкой 5.
4. Цементировочный агрегат 3 закачивает в скважину формалин, цементировочный агрегат 1 закачивает раствор сырых фенолов и щелочи. Исходные реагенты смешиваются в тройнике-смесителе 4.
5. После закачки исходных реагентов в скважину при помощи агрегата 2 осуществляется продавка смолы в пласт водой.
Реагенты закачиваются в пласт в предельно короткий срок - от 15 до 30 мин.
6. После продавки скважину оставляют на время, необходимое для затвердевания смолы в зависимости от температуры пласта: при температуре пласта 353 К время затвердевания смолы равно 2 сут; при температуре пласта 343, 333 и 323 К время затвердевания равно 4,8 и 14 сут соответственно.
7. Проверка результатов крепления призабойной зоны пласта проводится ее исследованием при установившихся отборах. Способ крепления призабойных зон скважин органическими смолами применяется нефтяниками Азербайджана с 1958 г. В последующие годы он был усовершенствован за счет одновременной закачки в скважину жидкой фенолформалиновой смеси с песком. Содержание фенолформалиновой смеси составляет 35 - 40 % от массы песка. В этом случае прочность закрепленного песка призабойной зоны практически це уменьшается, и что особенно важно, не уменьшается коэффициент проницаемости обработанной призабойной зоны. Смесь указанного состава отвечает всем требованиям перекачки.
Для крепления рыхлых песков на подземных хранилищах газа при низких температурах пласта (293 - 303 ºК) разработан метод крепления смолой из фенолоспирта. В качестве катализатора полимеризации (поликонденсации) используется бензолсульфокислота (БСК).
Отличительные черты технологии крепления этим способом: 1) смола продавливается в пласт при помощи углеводородной жидкости (газовый конденсат или дизельное топливо); 2) после продавки смолы в пласт в объеме, равном объему перового пространства пласта с радиусом в 1 м, закачивали теплый газ в пласт, что способствовало повышению прочности смолы, упростило проблему освоения скважины после обработки; 3) обработка призабойной зоны смолой проводилась без задавки скважины жидкостью; это сокращает время обработки, сводит до минимума проблему взаимодействия воды с породами цементирующего вещества пласта-коллектора (особенно глинами монтмориллонитового типа, набухающими при взаимодействии с пресной водой), повышает качество сцепления смолы с породами пласта. Таким методом были обработаны призабойные зоны многих скважин на различных ПХГ.
В случае, если в продуктивном разрезе скважин имеются газоносные пласты с различным составом газа или имеет место чередование газоносных, нефтеносных и водоносных пластов, разделенных глинистыми пропластками, при резкой неоднородности пласта по разрезу иметь открытый забой нельзя. В этих условиях скважина бурится до подошвы продуктивного комплекса, обсаживается обсадной колонной и цементируется до устья. Скважина и пласт сообщаются между собой при помощи перфорации того или иного вида. Если через перфорационные каналы в скважину выносится песок, то в нее можно спускать фильтры, собранные на поверхности.
16.5. Расчет внутреннего диаметра и глубины спуска колонны НКТ в скважину
Колонну НКТ спускают в скважину для: 1) предохранения эксплуатационной обсадной колонны от абразивного воздействия твердых взвесей и коррозионных агентов (Н2S, СО2, кислот жирного ряда - муравьиной, уксусной, пропионовой, масляной и др.), содержащихся в потоке газа; 2) контроля за условиями отбора газа на забое скважины; 3) создания необходимой скорости движения потока газа для выноса на поверхность твердых взвесей и жидкости с забоя скважины; 4) равномерной выработки газонасыщенных пластов большой толщины по всему вскрытому интервалу; 5) проведения ремонтных работ и интенсификации притока газа из пласта в скважину.
16.5.1. Определение внутреннего диаметра колонны НКТ
Определим внутренний диаметр колонны НКТ D из условия выноса с забоя на поверхность твердых частиц заданного размера d и и плотности ρч.
Силу сопротивления среды (в Н) при падении в ней твердой частицы определим по закону Ньютона
, (16.3)
где ξ - безразмерный коэффициент сопротивления среды, ξ = ξ(Rе); Rе - критерий Рейнольдса; F - площадь поперечного сечения частицы (полагая частицу сферической, имеем F = πd2/4, где d - диаметр частицы); ρг - плотность газа, кг/м3; v - скорость движения осаждающейся частицы, м/с.
Вес твердой частицы в газовой среде (в Н) выразится так:
,
В случае, если сила сопротивления среды R равна весу частицы в газовой среде G, получим
, (16.4)
При малых Rе (Rе < 500) коэффициент сопротивления среды можно выразить из закона Стокса:
,
где μ - коэффициент динамической вязкости газа, Па-с. Подставив это выражение для ξ в (16.4), получим (в м/с)
, (16.5)
В случае, если Rе > 500, ξ не зависит от Rе; ξ = 0,44. Подставив это значение ξ в (16.4), получим