ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 15.03.2024
Просмотров: 976
Скачиваний: 0
СОДЕРЖАНИЕ
1. ОБЩАЯ ХАРАКТЕРИСТИКА НЕФТЯНОЙ ЗАЛЕЖИ
1.1. Понятие о нефтяной залежи
1.2. Механизм использования пластовой энергии при добыче нефти
2. ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ
2.2. Приток жидкости к скважине
2.3. Режимы разработки нефтяных месторождений
3. ТЕХНОЛОГИЯ И ТЕХНИКА ВОЗДЕЙСТВИЯ НА ЗАЛЕЖЬ НЕФТИ
3.1. Цели и методы воздействия
3.2. Технология поддержания пластового давления закачкой воды
3.3. Основные характеристики поддержания пластового давления закачкой воды
3.5. Техника поддержания давления закачкой воды
3.6. Оборудование кустовых насосных станций
3.7. Технология и техника использования глубинных вод для ППД
3.8. Поддержание пластового давления закачкой газа
3.9. Методы теплового воздействия на пласт
3.10. Техника закачки теплоносителя в пласт
4. ПОДГОТОВКА СКВАЖИН К ЭКСПЛУАТАЦИИ
4.1. Конструкция оборудования забоев скважин
4.2. Приток жидкости к перфорированной скважине
4.3. Техника перфорации скважин
4.5. Методы освоения нефтяных скважин
4.6. Передвижные компрессорные установки
4.7. Освоение нагнетательных скважин
5. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ
5.1. Назначение методов и их общая характеристика
5.2. Обработка скважин соляной кислотой
5.4. Поинтервальная или ступенчатая СКО
5.5. Кислотные обработки терригенных коллекторов
5.6. Техника и технология кислотных обработок скважин
5.7. Гидравлический разрыв пласта
5.8. Осуществление гидравлического разрыва
5.9. Техника для гидроразрыва пласта
5.10. Тепловая обработка призабойной зоны скважины
5.11. Термогазохимическое воздействие на призабойную зону скважины
5.12. Другие методы воздействия на призабойную зону скважин
6.1. Назначение и методы исследования скважин
6.2. Исследование скважин при установившихся режимах
6.3. Исследование скважин при неустановившихся режимах
6.4. Термодинамические исследования скважин
6.5. Скважинные дебитометрические исследования
6.6. Техника и приборы для гидродинамических исследований скважин
7. ОСНОВЫ ТЕОРИИ ПОДЪЕМА ЖИДКОСТИ В СКВАЖИНЕ
7.1. Физика процесса движения газожидкостной смеси в вертикальной трубе
7.2. Уравнение баланса давлений
7.3. Плотность газожидкостной смеси
8. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН
8.1. Артезианское фонтанирование
8. 2. Фонтанирование за счет энергии газа
8. 4. Расчет фонтанного подъемника
8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
8. 6. Оборудование фонтанных скважин
8. 7. Регулирование работы фонтанных скважин
8. 8. Осложнения в работе фонтанных скважин и их предупреждение
9. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН
9.1. Общие принципы газлифтной эксплуатации
9.2. Конструкции газлифтных подъемников
9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
9.4. Методы снижения пусковых давлений
9.6. Принципы размещения клапанов
9.7. Принципы расчета режима работы газлифта
9.9. Системы газоснабжения и газораспределения
9.11. Исследование газлифтных скважин
10. ЭКСПЛУАТАЦИЯ СКВАЖИН ШТАНГОВЫМИ НАСОСАМИ
10.1. Общая схема штанговой насосной установки, ее элементы и назначение
10.2. Подача штангового скважинного насоса и коэффициент подачи
10.3. Факторы, снижающие подачу ШСН
10.4. Оборудование штанговых насосных скважин
10.5. Исследование скважин, оборудованных штанговыми насосными установками
10.6. Эксплуатация скважин штанговыми насосами в осложненных условиях
11. эксплуатация скважин погружными центробежными электронасосами
11.1. Общая схема установки погружного центробежного электронасоса
11.2. Погружной насосный агрегат
11.3. Элементы электрооборудования установки
11.4. Установка ПЦЭН специального назначения
11.5. Определение глубины подвески ПЦЭН
11.6. Определение глубины подвески ПЦЭН c помощью кривых распределения давления
12.1. Принцип действия гидропоршневого насоса
12.2. Подача ГПН и рабочее давление
14. РАЗДЕЛЬНАЯ ЭКСПЛУАТАЦИЯ ПЛАСТОВ ОДНОЙ СКВАЖИНОЙ
14.2. Некоторые схемы оборудования скважин для раздельной эксплуатации пластов
14.3. Раздельная закачка воды в два пласта через одну скважину
15.3. Технология текущего ремонта скважин
15.4. Капитальный ремонт скважин
15.5. Новая технология ремонтных работ на скважинах
16. ЭКСПЛУАТАЦИЯ ГАЗОВЫХ СКВАЖИН
16.1. Особенности конструкций газовых скважин
16.2. Оборудование устья газовой скважины
16.3. Подземное оборудование ствола газовых скважин при добыче природного газа различного состава
16.4. Оборудование забоя газовых скважин
16.5. Расчет внутреннего диаметра и глубины спуска колонны НКТ в скважину
16.6. Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
16.7. Одновременная раздельная эксплуатация двух газовых пластов одной скважиной
, (16.6)
Полагая что ρч > ρг (например, ρч = 2500 кг/м3; ρг = 50 кг/м3), с учетом
,
формулу для определения v0 можно записать в следующем виде:
, (16.7)
Из формулы (16.7) следует, что v0 = v0 (d, ρч, Z, Т, P). Диаметр колонны НКТ определяется в следующем порядке. Из уравнения притока газа к скважине
, (16.8)
определим Pз соответствующее принятому значению Q, далее найдем t3 по формуле t3 =tн - ε·(Pк - Р3) и Z3, затем по формуле (16.7) можем определить vо. Для заданного диаметра частицы d и далее - необходимый диаметр колонны НКТ D, принимая некоторый резерв скорости для надежности выноса частицы (vор = 1.2 vо)
, (16.9)
Обычно рч = 2500 кг/м3, и = 0,1 мм, и„ = 1 - 3 м/с.
При заданных диаметрах колонны НКТ D и выносимых частиц породы d изменение во времени дебита скважины Q для выноса твердых частиц с забоя скважины определяется методом итераций (последовательных приближений).
Вынос капель жидкости с забоя скважины на поверхность характеризуется тем, что размер и форма капли изменяются при изменении температуры и давления. Повышение давления в области проявления прямых процессов конденсации и испарения приводит к увеличению (сохранению) размера капли, увеличение температуры - к уменьшению размера капли в результате испарения жидкости с ее поверхности.
Сохранению размера капли способствует поверхностное натяжение σ, уменьшению размера, дроблению капли - скоростной напор. Установлено, что при данной скорости газового потока существует критический, максимальный диаметр капли, зависящий от безразмерного числа Вебера. Экспериментально определено, что максимальный диаметр жидкой частицы сохраняется до Wе = 30:
, (16.10)
Используя результаты опытов Хинза, Тернер с соавторами получил выражение скорости, необходимой для выноса частицы жидкости движущимся потоком газа без ее дробления:
, (16.11)
Предположим, что σ и γг мало влияют на vо. Учитывая (16.11), запишем формулу Тернера
, (16.12)
где v0 - в м/с, Р3 - забойное давление, 0,1 МПа.
Промысловые экспериментальные исследования показали, что коэффициент в формуле (16.12) следует увеличить примерно в 2 раза. С учетом этого расчетная формула имеет вид
, (16.13)
Определим дебит газа, при котором капли жидкости критического диаметра будут выноситься с забоя скважины:
, (16.14)
Подставив это выражение в уравнение притока газа к скважине (16.8), с учетом зависимости Z = Z (P3, Т3) методом последовательных приближений определим P3 для заданного диаметра колонны НКТ и затем v0min и Qmin.
Температуру, давление, скорость потока и фазовое состояние газожидкостного потока в скважине можно измерить прибором ТДСП-12, разработанным в УкрНИИГазе.
Во время разработки месторождения при уменьшении пластового давления диаметр колонны фонтанных труб увеличивается, колонны малого диаметра извлекаются из скважины и заменяются колоннами большего диаметра. В завершающий период разработки при отсутствии поступления воды и твердых взвесей в скважину возможна эксплуатация скважин по металлической обсадной колонне.
16.5.2. Определение глубины спуска колонны НКТ в скважину
На рис. 16.13 изображена схема положения башмака (конца) колонны фонтанных труб в скважинах Ленинградского и Вуктыль-ского газоконденсатных месторождений (выше кровли пласта - рис. 16.13, б в интервале перфорации - рис. 16.13, а, в). Положение башмака колонны фонтанных труб в скважине существенно влияет на: 1) отработку продуктивных горизонтов в многопластовом неоднородном по толщине пласта месторождении; 2) высоту образующейся песчано-глинистой пробки при освоении и эксплуатации скважин; 3) высоту столба жидкости (конденсата и воды) в НКТ и затрубье; 4) очередность обводнения по высоте многопластовых месторождений; 5) сопротивление потоков газа, движущихся сверху вниз и снизу вверх к башмаку колонны НКТ; 6) коэффициенты фильтрационного сопротивления А и В.
На рис. 16.14 изображен схематичный разрез многопластового месторождения, представленного пачками коллекторов различной толщины, проницаемости и пористости. При добыче газа из пласта он будет отбираться из первой и частично из второй пачек, поскольку третья и четвертая пачки перекрыты жидкой или песчано-глинистой пробкой. В первой и второй пачках будут наблюдаться наиболее интенсивное падение давления и наиболее существенное продвижение краевой воды. В крайнем случае первая и вторая пачки могут обводниться, в то время как в нижних пачках запасы газа останутся почти начальными. Для отбора газа из третьей и четвертой пачек придется пробурить новые скважины. Очередность выработки и обводнения пачек снизу вверх в этих условиях нарушается, технико-экономические показатели добычи газа ухудшаются.
Положение башмака колонны НКТ в скважине влияет на высоту образующейся песчано-глинистой пробки при неизменном дебите газа. В качестве примера приведем эмпирическую зависимость высоты песчано-глинистой пробки h (в м) на скважинах месторождения Газли от погружения башмака колонны НКТ относительно интервала перфорации (H - b) в скважине при Q = 860 тыс. м3/сут:
, (16.15)
где l = (H - b)·100 / H, %, H - толщина пласта, м; b - расстояние от нижних отверстий интервала перфорации до башмака колонны НКТ, м.
Из зависимости (16.15) следует, что максимальная высота песчаной пробки hmax = 19,5 м при l = 0 (b = H), т. е. когда башмак колонны фонтанных труб находится в кровле пласта, и h = 0 при l = 92 % (т. е. b = 8 % от Н), когда башмак колонны НКТ на 8 % от толщины пласта не доходит до нижних отверстий перфорации.
Рис. 16.13. Схема башмака колонны НКТ в скважинах Ленинградского (а) и Вуктыльского (б, в) месторождений:
а - скв. 128, М = 1,3 м; скв. 34, М = 7,6 м; скв. 31, Δl = 101 м; б - скв. 3, Δl = 357 м; в - скв. 21, Δl = 332 м
Рис. 16.14. Схематичный разрез забоя скважины, вскрывшей неоднородный по разрезу газонасыщенный пласт:
I - IV - пачки пласта различной толщины, проницаемости и пористости; 1 - жидкостная или песчано-глинистая пробка в скважине
; 2 - башмак колонны НКТ; 3, 4 - кровля и подошва пласта соответственно
Высоту столба жидкости в затрубном пространстве при эксплуатации скважины по колонне НКТ можно определить из соотношения
, (16.16)
где Pзт и Pз - измеряемые давления в затрубном пространстве на устье и на забое скважины соответственно; Δ - относительная плотность затрубного газа по воздуху; Z, Т - соответственно средние по глубине скважины коэффициент сверхсжимаемости затрубного газа и абсолютная температура газа; L - глубина скважины; ρж - плотность жидкости на забое скважины; h - высота столба жидкости в затрубном пространстве.
Высоту столба жидкости в колонне НКТ h1 (в м) можно определить по уравнению Ю. П. Коротаева
, (16.17)
где Q - расход газа в рабочих условиях (P3, T3), м3/с; K1 - экспериментальный коэффициент, К1 = 0,5 м/с; D - внутренний диаметр НКТ, м; L - длина колонны НКТ, м.
Погружение башмака колонны НКТ в скважине можно определить из условия равенства скоростей потоков газа, движущихся вниз по затрубному пространству и вверх по обсадной колонне (vв = vн).
Полагая известными дебит газа, приходящийся на единицу длины интервала перфорации в верхней и нижней частях пласта qв и qн, длины верхнего lв и нижнего (H - lв) интервалов, получим
,
где
.
Положение башмака колонны НКТ должно быть таким, чтобы скорости потоков газа, движущихся вниз по затрубному пространству и вверх в колонне обсадных труб, были равны у башмака колонны НКТ (vв = vн), чтобы скорость газа на входе в колонну НКТ была больше минимально необходимой для выноса твердых частиц и жидких капель критического диаметра (vнкт > vmin), чтобы высота столба жидкой или песчано-глинистой пробки в колонне обсадных труб была минимальной ( hж -» 0).
16.6. Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
В газовых скважинах может происходить конденсация парообразной воды из газа и поступление воды на забой скважины из пласта. В газоконденсатных скважинах к этой жидкости добавляется углеводородный конденсат, поступающий из пласта и образующийся в стволе скважин. В начальный период разработки залежи при высоких скоростях газового потока на забое скважин и небольшом количестве жидкости она практически полностью выносится на поверхность. По мере снижения скорости потока газа на забое и увеличения расхода жидкости, поступающей на забой скважины за счет обводнения проницаемых пропластков и увеличения объемной конденсатонасыщенности пористой среды, не обеспечивается полный вынос жидкости из скважины, происходит накопление столба жидкости на забое. Он увеличивает противодавление на пласт, приводит к существенному снижению дебита, к прекращению притока газа из низкопроницаемых пропластков и даже к полной остановке скважины.
Для эффективной эксплуатации скважин в этих условиях разработаны различные методы.
Предотвратить поступление жидкости в скважину можно поддержанием условий отбора газа на забое скважины, при которых не происходит конденсации воды и жидких углеводородов в при-забойной зоне пласта, недопущением прорыва конуса подошвенной воды или языка краевой воды в скважину. Кроме того, можно предотвратить поступление воды в скважину изоляцией посторонних и пластовых вод.
Жидкость с забоя скважин удаляется непрерывно или периодически. Непрерывное удаление жидкости из скважины осуществляется эксплуатацией ее при скоростях, обеспечивающих вынос жидкости с забоя в поверхностные сепараторы, отбором жидкости через спущенные в скважину сифонные или фонтанные трубы с помощью газлифта, плунжерного лифта или откачки жидкости сква-жинными насосами.
Периодическое удаление жидкости можно осуществить остановкой скважины для поглощения жидкости пластом, продувкой скважины в атмосферу через сифонные или фонтанные трубы без закачки или с закачкой ПАВ (поверхностно-активных веществ - пенообразователей) на забой скважины.