Файл: Перевод чисел из одной позиционной системы счисления в другую.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.02.2024
Просмотров: 91
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Задание 2. Составьте таблицы истинности для следующих логических формул
1. ;
X1 | X2 | X3 | | X1 * | X1+X2 | | (X1+X2)* | X1 * (X1+X2)* |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
2.
;
XX | Y | Z | YZ | X YZ | (X YZ) ( YZ) |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 |
3. ;
A | B | C | AB | B≡C | A+(B≡C) | AB A+(B≡C) |
0 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
Задание 3: Какой логической функции соответствует таблица истинности?
A | B | C | F |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 |
-
не или и ; -
и или ; -
не и или ; -
не и и .
Задание 4: Применяя таблицы истинности, докажите тождественную истинность
логических формул:
1. ;
X | Y | (X≡Y) | | ((X≡Y) ) | | ((X≡Y) ) |
0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 1 |
2. ;
X | Y | X Y | | | | (X Y) ≡( ) |
0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 1 | 0 | 0 | 1 | 1 |
3 .
X | Y | Z | Y Z | (X (Y Z)) | X Y | X Z | ((X Y) (X Z)) | (X (Y Z)) ((X Y) (X Z)) |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |