ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 15.03.2024
Просмотров: 1087
Скачиваний: 0
СОДЕРЖАНИЕ
1. ОБЩАЯ ХАРАКТЕРИСТИКА НЕФТЯНОЙ ЗАЛЕЖИ
1.1. Понятие о нефтяной залежи
1.2. Механизм использования пластовой энергии при добыче нефти
2. ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ
2.2. Приток жидкости к скважине
2.3. Режимы разработки нефтяных месторождений
3. ТЕХНОЛОГИЯ И ТЕХНИКА ВОЗДЕЙСТВИЯ НА ЗАЛЕЖЬ НЕФТИ
3.1. Цели и методы воздействия
3.2. Технология поддержания пластового давления закачкой воды
3.3. Основные характеристики поддержания пластового давления закачкой воды
3.5. Техника поддержания давления закачкой воды
3.6. Оборудование кустовых насосных станций
3.7. Технология и техника использования глубинных вод для ППД
3.8. Поддержание пластового давления закачкой газа
3.9. Методы теплового воздействия на пласт
3.10. Техника закачки теплоносителя в пласт
4. ПОДГОТОВКА СКВАЖИН К ЭКСПЛУАТАЦИИ
4.1. Конструкция оборудования забоев скважин
4.2. Приток жидкости к перфорированной скважине
4.3. Техника перфорации скважин
4.5. Методы освоения нефтяных скважин
4.6. Передвижные компрессорные установки
4.7. Освоение нагнетательных скважин
5. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ
5.1. Назначение методов и их общая характеристика
5.2. Обработка скважин соляной кислотой
5.4. Поинтервальная или ступенчатая СКО
5.5. Кислотные обработки терригенных коллекторов
5.6. Техника и технология кислотных обработок скважин
5.7. Гидравлический разрыв пласта
5.8. Осуществление гидравлического разрыва
5.9. Техника для гидроразрыва пласта
5.10. Тепловая обработка призабойной зоны скважины
5.11. Термогазохимическое воздействие на призабойную зону скважины
5.12. Другие методы воздействия на призабойную зону скважин
6.1. Назначение и методы исследования скважин
6.2. Исследование скважин при установившихся режимах
6.3. Исследование скважин при неустановившихся режимах
6.4. Термодинамические исследования скважин
6.5. Скважинные дебитометрические исследования
6.6. Техника и приборы для гидродинамических исследований скважин
7. ОСНОВЫ ТЕОРИИ ПОДЪЕМА ЖИДКОСТИ В СКВАЖИНЕ
7.1. Физика процесса движения газожидкостной смеси в вертикальной трубе
7.2. Уравнение баланса давлений
7.3. Плотность газожидкостной смеси
8. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН
8.1. Артезианское фонтанирование
8. 2. Фонтанирование за счет энергии газа
8. 4. Расчет фонтанного подъемника
8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
8. 6. Оборудование фонтанных скважин
8. 7. Регулирование работы фонтанных скважин
8. 8. Осложнения в работе фонтанных скважин и их предупреждение
9. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН
9.1. Общие принципы газлифтной эксплуатации
9.2. Конструкции газлифтных подъемников
9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
9.4. Методы снижения пусковых давлений
9.6. Принципы размещения клапанов
9.7. Принципы расчета режима работы газлифта
9.9. Системы газоснабжения и газораспределения
9.11. Исследование газлифтных скважин
10. ЭКСПЛУАТАЦИЯ СКВАЖИН ШТАНГОВЫМИ НАСОСАМИ
10.1. Общая схема штанговой насосной установки, ее элементы и назначение
10.2. Подача штангового скважинного насоса и коэффициент подачи
10.3. Факторы, снижающие подачу ШСН
10.4. Оборудование штанговых насосных скважин
10.5. Исследование скважин, оборудованных штанговыми насосными установками
10.6. Эксплуатация скважин штанговыми насосами в осложненных условиях
11. эксплуатация скважин погружными центробежными электронасосами
11.1. Общая схема установки погружного центробежного электронасоса
11.2. Погружной насосный агрегат
11.3. Элементы электрооборудования установки
11.4. Установка ПЦЭН специального назначения
11.5. Определение глубины подвески ПЦЭН
11.6. Определение глубины подвески ПЦЭН c помощью кривых распределения давления
12.1. Принцип действия гидропоршневого насоса
12.2. Подача ГПН и рабочее давление
14. РАЗДЕЛЬНАЯ ЭКСПЛУАТАЦИЯ ПЛАСТОВ ОДНОЙ СКВАЖИНОЙ
14.2. Некоторые схемы оборудования скважин для раздельной эксплуатации пластов
14.3. Раздельная закачка воды в два пласта через одну скважину
15.3. Технология текущего ремонта скважин
15.4. Капитальный ремонт скважин
15.5. Новая технология ремонтных работ на скважинах
16. ЭКСПЛУАТАЦИЯ ГАЗОВЫХ СКВАЖИН
16.1. Особенности конструкций газовых скважин
16.2. Оборудование устья газовой скважины
16.3. Подземное оборудование ствола газовых скважин при добыче природного газа различного состава
16.4. Оборудование забоя газовых скважин
16.5. Расчет внутреннего диаметра и глубины спуска колонны НКТ в скважину
16.6. Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
16.7. Одновременная раздельная эксплуатация двух газовых пластов одной скважиной
Рис. 8.10. Фонтанная тройниковая арматура кранового типа для подвески двух рядов НКТ
(2АФТ-60 x 40 х КрЛ-125): 1 - тройник; 2 - патрубок для подвески второго ряда НКТ;
3 - патрубок для подвески первого ряда НКТ
Рис. 8.11. Штуцер быстросменный для фонтанной арматуры высокого давления (ЩБА-50-700):
1 - корпус, 2 - тарельчатая пружина, 3 - боковое седло, 4 - обойма, 5 - крышка, 6 - нажимная гайка,
7 - прокладка, 8 - гайка боковая. 9 - штуцерная металлокерамическая втулка
снижение давления от давления на буфере до давления в отводящей линии системы нефтегазосбора. Если разность давлений велика, применяют несколько последовательно соединенных штуцеров, в каждом из которых частично снижается давление.
8.6.4. Манифольды
Манифольд предназначен для обвязки фонтанной арматуры с трубопроводом, подающим продукцию скважины на замерную установку. Применяются различные схемы таких обвязок в зависимости от местных условий и технологии эксплуатации. Поэтому эти схемы не стандартизованы, но их узлы комплектуются из элементов заводского изготовления. Простейшая схема манифольда крестовой фонтанной арматуры (рис. 8. 12) не предусматривает обвязку выкидов межтрубных пространств и предполагает наличие только одной
Рис. 8.12. Схема обвязки крестовой фонтанной арматуры
выкидной линии, соединяющей скважину с трапной или замерной установкой. В некоторых случаях при интенсивном отложении парафина предусматривают две выкидные линии и манифольд, допускающий работу через любой из двух выкидов.
На рис. 8.12 показаны стандартизованные узлы заводской сборки. Они очерчены четырехугольниками и помечены номером (№ 1, №2, №3). Схема предусматривает два регулируемых штуцера, два вентиля для отбора проб жидкости и газа, запорные устройства 3 для сброса продукции на факел или земляной амбар, тройники 4, крестовики 5, предохранительный клапан 6, фланцевые соединения 7. Основные узлы манифольда унифицированы с узлами и деталями фонтанной арматуры. Манифольды на концах имеют фланцы для присоединения труб диаметром 80 мм. В обозначение манифольда входят номер схемы, условный проходной диаметр и рабочее давление, например, 1МАТ-60 х 125. Выкидной шлейф соединяет манифольд арматуры с групповой замерной установкой (ГЗУ)
промысловой системы нефтегазосбора, где автоматически замеряются дебиты скважин. К ГЗУ подключается группа скважин (до 24), дебит которых измеряется поочередно по определенной программе.
Одиночные фонтанные скважины и особенно высокодебитные работают в индивидуальную трапную установку, в которой происходит сепарация газа (иногда двухступенчатая) и замер дебита. Далее, продукция скважины вместе с водой и остаточным газом поступает в промысловый нефтесборный пункт для частичного обезвоживания путем отстоя и полной сепарации газа. Часто промысловый нефтесборный пункт совмещают с установками по обезвоживанию и обессоливанию нефти с помощью ее нагрева, промывки пресной водой с добавкой поверхностно-активных веществ - деэмульгаторов, разрушающих поверхностные пленки на границе мельчайших капелек воды и нефти.
8. 7. Регулирование работы фонтанных скважин
Как правило, на начальных этапах разработки фонтанные скважины и особенно высокодебитные определяют возможности нефтедобывающего предприятия. Поэтому их исследованию, регулированию и наблюдению за их работой уделяется повышенное внимание. Кроме того, фонтанное оборудование позволяет сравнительно просто проводить глубинные исследования, отбор глубинных проб, снятие профилей притока и прочие. Для установления обоснованного режима эксплуатации фонтанной скважины важно знать результаты ее работы на различных опытных режимах. Режимы работы фонтанной скважины изменяют сменой штуцера, а точнее диаметра его проходного отверстия. При этом необходимо выдержать скважину на новом режиме некоторое время, прежде чем проводить какое-либо измерение.
Это время необходимо, чтобы пласт и скважина перешли на установившийся режим после возмущения, вносимого в их работу сменой штуцера и изменением в связи с этим ее дебита и забойного давления. Продолжительность перехода скважины на установившийся режим различна и зависит от гидропроводности и пьезопроводности пласта, а также от относительного изменения дебита.
Признаками установившегося режима скважин являются постоянство ее дебита и показаний манометров, присоединенных к буферу скважины и к межтрубному пространству. Обычно это время измеряется несколькими десятками часов.
Для построения регулировочных кривых и индикаторной линии необходимо по крайней мере четыре смены режима работы скважины. После выхода на установившийся режим работы через лубрикатор на забой скважины спускают глубинный манометр или другие приборы, а на поверхности измеряют с возможной точностью дебит, обводненность продукции, содержание песка и твердой взвеси в продукции скважины, газовый фактор или просто дебит газа, показания буферного и межтрубного манометра и отмечают вообще характер работы скважины: наличие пульсации, ее ритмичность и амплитуду, вибрацию арматуры и манифольдов. По полученным данным строят так называемые регулировочные кривые, т. е. зависимости измеренных показателей от диаметра штуцера (рис. 8.13).
Регулировочные кривые служат одним из оснований для установления технологической нормы добычи из данной скважины и режима ее постоянной работы, например:
-
недопущение забойного давления Рс ниже давления насыщения Рнас или некоторой его доли Рс > 0,75·Рнас; -
установление режима, соответствующего минимальному газовому фактору или его значению, не превышающему определенную величину; -
установление режима, соответствующего недопущению резкого увеличения количества выносимого песка для предотвращения образования каверны в пласте за фильтром скважины; -
установление режима, соответствующего недопущению резкого увеличения процентного содержания воды в продукции скважины; -
недопущение на забое скважины такого давления, при котором может произойти смятие обсадной колонны; -
недопущение режима, при котором давление на буфере или в межтрубном пространстве достигнет опасных значений с точки зрения прочности и надежности работы арматуры и поверхностного оборудования вообще; -
недопущение режима, при котором давление на буфере скважины может стать ниже давления в выкидном манифольде системы нефтегазосбора; -
недопущение такого режима работы скважины, при котором могут возникать пульсации, приводящие к срыву непрерывного процесса фонтанирования; -
установление такого режима, при котором активным процессом дренирования охватывается наибольшая толщина пласта или наибольшее число продуктивных пропластков. Это устанавливается с помощью снятия профилей притока глубинными дебитомерами на разных режимах работы скважины.
Рис. 8.13. Регулировочные кривые фонтанной скважины: d - диаметр штуцера;
1 - Рc - забойное давление, МПа; 2 - Гo - газовый фактор, м
3/м3 ; 3 - Q - дебит скважины, м3/сут;
4 - ΔР - депрессия, Мпа; 5 - П - содержание песка в жидкости, кг/м3 ; 6 - n - содержание
воды в продукции скважины, %
После того как режим работы данной скважины установлен и обоснован, за его дальнейшим поддержанием тщательно наблюдают.
Особенно тщательное наблюдение устанавливается за высокодебитными фонтанными скважинами. При периодическнх осмотрах арматуры фиксируются нарушения герметичности в соединениях, опасные вибрации элементов оборудования, показания манометров. О нарушении нормальной работы скважин судят по аномальным изменениям буферного и затрубного давления, изменению дебита нефти и обводненности, количеству песка и пр.
Например, падение буферного давления при одновременном повышении мсжтрубного может указать на опасные пределы отложения парафина или минеральных солей на внутренних стенках НКТ. Одновременное снижение буферного и межтрубного давления свидетельствует об образовании на забое скважины песчаной пробки или накоплении тяжелой минерализованной пластовой воды в промежутке между забоем и башмаком НКТ. Малая скорость восходящего потока в этом промежутке может при определенных условиях привести к увеличению давления на забое. Падение давления на буфере при одновременном увеличении дебита указывает на разъедание штуцера и необходимость его замены. Засорение штуцера или отложение парафина в манифольде и в выкидном шлейфе при одновременном уменьшении дебита приводит к росту буферного и межтрубного давления.