ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 15.03.2024
Просмотров: 1055
Скачиваний: 0
СОДЕРЖАНИЕ
1. ОБЩАЯ ХАРАКТЕРИСТИКА НЕФТЯНОЙ ЗАЛЕЖИ
1.1. Понятие о нефтяной залежи
1.2. Механизм использования пластовой энергии при добыче нефти
2. ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ
2.2. Приток жидкости к скважине
2.3. Режимы разработки нефтяных месторождений
3. ТЕХНОЛОГИЯ И ТЕХНИКА ВОЗДЕЙСТВИЯ НА ЗАЛЕЖЬ НЕФТИ
3.1. Цели и методы воздействия
3.2. Технология поддержания пластового давления закачкой воды
3.3. Основные характеристики поддержания пластового давления закачкой воды
3.5. Техника поддержания давления закачкой воды
3.6. Оборудование кустовых насосных станций
3.7. Технология и техника использования глубинных вод для ППД
3.8. Поддержание пластового давления закачкой газа
3.9. Методы теплового воздействия на пласт
3.10. Техника закачки теплоносителя в пласт
4. ПОДГОТОВКА СКВАЖИН К ЭКСПЛУАТАЦИИ
4.1. Конструкция оборудования забоев скважин
4.2. Приток жидкости к перфорированной скважине
4.3. Техника перфорации скважин
4.5. Методы освоения нефтяных скважин
4.6. Передвижные компрессорные установки
4.7. Освоение нагнетательных скважин
5. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ
5.1. Назначение методов и их общая характеристика
5.2. Обработка скважин соляной кислотой
5.4. Поинтервальная или ступенчатая СКО
5.5. Кислотные обработки терригенных коллекторов
5.6. Техника и технология кислотных обработок скважин
5.7. Гидравлический разрыв пласта
5.8. Осуществление гидравлического разрыва
5.9. Техника для гидроразрыва пласта
5.10. Тепловая обработка призабойной зоны скважины
5.11. Термогазохимическое воздействие на призабойную зону скважины
5.12. Другие методы воздействия на призабойную зону скважин
6.1. Назначение и методы исследования скважин
6.2. Исследование скважин при установившихся режимах
6.3. Исследование скважин при неустановившихся режимах
6.4. Термодинамические исследования скважин
6.5. Скважинные дебитометрические исследования
6.6. Техника и приборы для гидродинамических исследований скважин
7. ОСНОВЫ ТЕОРИИ ПОДЪЕМА ЖИДКОСТИ В СКВАЖИНЕ
7.1. Физика процесса движения газожидкостной смеси в вертикальной трубе
7.2. Уравнение баланса давлений
7.3. Плотность газожидкостной смеси
8. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН
8.1. Артезианское фонтанирование
8. 2. Фонтанирование за счет энергии газа
8. 4. Расчет фонтанного подъемника
8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
8. 6. Оборудование фонтанных скважин
8. 7. Регулирование работы фонтанных скважин
8. 8. Осложнения в работе фонтанных скважин и их предупреждение
9. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН
9.1. Общие принципы газлифтной эксплуатации
9.2. Конструкции газлифтных подъемников
9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
9.4. Методы снижения пусковых давлений
9.6. Принципы размещения клапанов
9.7. Принципы расчета режима работы газлифта
9.9. Системы газоснабжения и газораспределения
9.11. Исследование газлифтных скважин
10. ЭКСПЛУАТАЦИЯ СКВАЖИН ШТАНГОВЫМИ НАСОСАМИ
10.1. Общая схема штанговой насосной установки, ее элементы и назначение
10.2. Подача штангового скважинного насоса и коэффициент подачи
10.3. Факторы, снижающие подачу ШСН
10.4. Оборудование штанговых насосных скважин
10.5. Исследование скважин, оборудованных штанговыми насосными установками
10.6. Эксплуатация скважин штанговыми насосами в осложненных условиях
11. эксплуатация скважин погружными центробежными электронасосами
11.1. Общая схема установки погружного центробежного электронасоса
11.2. Погружной насосный агрегат
11.3. Элементы электрооборудования установки
11.4. Установка ПЦЭН специального назначения
11.5. Определение глубины подвески ПЦЭН
11.6. Определение глубины подвески ПЦЭН c помощью кривых распределения давления
12.1. Принцип действия гидропоршневого насоса
12.2. Подача ГПН и рабочее давление
14. РАЗДЕЛЬНАЯ ЭКСПЛУАТАЦИЯ ПЛАСТОВ ОДНОЙ СКВАЖИНОЙ
14.2. Некоторые схемы оборудования скважин для раздельной эксплуатации пластов
14.3. Раздельная закачка воды в два пласта через одну скважину
15.3. Технология текущего ремонта скважин
15.4. Капитальный ремонт скважин
15.5. Новая технология ремонтных работ на скважинах
16. ЭКСПЛУАТАЦИЯ ГАЗОВЫХ СКВАЖИН
16.1. Особенности конструкций газовых скважин
16.2. Оборудование устья газовой скважины
16.3. Подземное оборудование ствола газовых скважин при добыче природного газа различного состава
16.4. Оборудование забоя газовых скважин
16.5. Расчет внутреннего диаметра и глубины спуска колонны НКТ в скважину
16.6. Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
16.7. Одновременная раздельная эксплуатация двух газовых пластов одной скважиной
10.5. Исследование скважин, оборудованных штанговыми насосными установками
Исследование ШСНУ необходимо для изучения притока и построения индикаторной кривой, а также для изучения работы самого насоса и выявления причин низкого коэффициента подачи.
Изменение отбора жидкости ШСНУ достигается либо изменением хода полированного штока 5 перестановкой пальца шатуна на кривошипе, либо изменением числа качаний п сменой шкива на валу электродвигателя. В некоторых случаях отбор можно изменить сменой размера насоса (Р), однако эта операция сложнее, так как требует осуществления спуско-подъемных работ на скважине.
При каждом изменении режима откачки после выхода скважины на установившийся режим, что определяется по стабилизации дебита, замеряется прямым или косвенным методом забойное давление, соответствующее данному установившемуся режиму работы. Для прямого измерения забойного давления созданы малогабаритные скваукинные манометры диаметром 22 - 25 мм. Такие приборы могут быть спущены в межтрубное пространство скважины на стальной проволоке через отверстие в планшайбе при эксцентричной подвеске НК.Т на устье. Полученные таким образом данные о забойном давлении наиболее достоверны. Однако в глубоких искривленных скважинах, а также при малых зазорах в межтрубном пространстве бывают прихваты манометра и обрывы проволоки. Для предотвращения этого используются так называемые лифтовые скважинные манометры, подвешиваемые к приемному патрубку ШСН и спускаемые в скважину вместе с НКТ. Эти манометры имеют часовой механизм с многосуточным заводом и фиксируют на бумажном бланке динамику изменения давления на глубине спуска прибора в процессе трех-четырехкратного изменения режимов откачки (дебитов). Такой метод позволяет получить достаточно надежные результаты исследования, однако он связан с необходимостью осуществления спуско-подъемных операций для спуска и подъема лифтового манометра. Поэтому эти замеры приурочивают к очередным ремонтным работам на скважине или очередной смене насоса. В настоящее время лифтовые манометры по этой причине не находят применения.
К косвенным методам исследования скважины на приток относится замер глубины динамического уровня жидкости в межтрубном пространстве, устанавливающегося при том или ином режиме откачки специальными приборами - эхолотами.
10.5.1. Эхолот
Эхолот работает следующим образом. В межтрубное пространство посылается звуковой импульс, который отражается от уровня жидкости, возвращается к устью скважины и улавливается микрофоном, соединенным через усилитель с регистрирующим устройством, записывающим все сигналы на бумажной ленте в виде диаграммы. Бумажная лента движется с помощью лентопротяжного механизма с постоянной скоростью. Измеряя расстояние между двумя пиками диаграммы, соответствующими начальному импульсу и отраженному от уровня, можно определить глубину этого уровня.
Поскольку звуковой сигнал проходит двойное расстояние от устья до уровня и обратно, то, если известна скорость распространения звуковой волны в газовой среде межтрубного пространства, глубина уровня может быть найдена из простого соотношения:
,
где S - глубина уровня; t = l / а - время от момента подачи импульса до прихода отраженного сигнала, который проходит за это время путь 2S; v - скорость звука в газовой среде межтрубного пространства; l - расстояние между двумя пиками диаграммы на бумажной ленте; а - скорость движения бумажной ленты.
Такой метод определения уровня жидкости имеет ряд недостатков.
Скорость звука v в межтрубном пространстве зависит от давления, температуры и плотности газа, заполняющего это пространство. Погрешность в определении v непосредственно влияет на определяемую величину уровня 5.
При измерении нескольких значений Si, и вычислении по ним величин ΔSi, соответствующих нескольким режимам отбора жидкости в той же скважине, погрешности уменьшаются, так как систематическая ошибка в величине v одинаково отразится на всех измеряемых значениях S.
Чтобы исключить ошибки, связанные с определением скорости звука в межтрубном пространстве, на колонне НК.Т устанавливают репер - утолщенную муфту, на 50 - 60% перекрывающую межтрубное пространство. Глубина установки этого репера S0 заранее известна. В этом случае на эхограмме получаются три пика: первый соответствует моменту подачи импульса на устье, второй - отраженному сигналу от репера и третий - отраженному сигналу от уровня. Очевидно, что расстояния между пиками эхограммы пропорциональны глубинам установки репера S0 и уровня S. Из пропорции
находим
Таким образом, установка репера исключает необходимость определения скорости звука в кольцевом пространстве. Для большей точности репер устанавливают вблизи уровня жидкости.
Рис. 10.11 Типичные эхограммы, снятые с помощью трехканального эхолота
Современные высокочувствительные эхолоты не требуют установки репера, так как фиксируют на бумажной ленте сигналы, отраженные от каждой муфты колонны НКТ. В этом случае глубина измеряемого уровня определяется подсчетом по эхограмме числа пиков до сигнала, соответствующего уровню жидкости, и умножением числа пиков на длину одной трубы.
Для создания звукового импульса и улавливания отраженных сигналов имеется «хлопушка» - специальный короткий патрубок, присоединяемый к фланцу задвижки межтрубного пространства, с ударником, производящим выстрел маломощного порохового заряда. Кроме того, в хлопушке или ее боковом отводе имеется кварцевый чувствительный микрофон. В некоторых конструкциях эхолотов вместо микрофона используют термофоны. Микрофон превращает звуковые сигналы в электрические, поступающие в усилитель. В современных эхолотах имеется электронный усилитель с трехканальным фильтром для глушения помехи и выделения измеряемого сигнала. Усилитель питается от батареи постоянного тока и не нуждается в наличии на скважине осветительной электролинии для своего питания. Усилитель имеет регулятор чувствительности и лентопротяжный механизм для обеспечения постоянной скорости движения бумажной ленты.
Три канала, устанавливаемых поворотом трехпозиционного переключателя, обеспечивают выделение (с помощью электрических фильтров) сигналов, отраженных от верхних муфт, выделение сигналов от муфт, находящихся на большой глубине, и выделение сигнала от уровня жидкости при больших глубинах (рис. 10.11).
Эхолот - переносной прибор, собран в небольшом ящике-футляре. Хлопушка присоединяется без разрядки газа из межтрубного пространства и допускает измерения при давлениях до 2,5 МПа.
Наличие вспененной жидкости в межтрубном пространстве скважины затрудняет получение четкого отраженного сигнала
от уровня и является общим недостатком измерения эхолотом. Поэтому перед измерением очень важно не производить разрядки газа из межтрубного пространства во избежание вспенивания. Однако это не всегда возможно, так как некоторые конструкции хлопушек предусматривают ее соединение через специальное отверстие в устьевой планшайбе, закрываемое винтовой пробкой. Необходимо также отметить, что для определения по уровню забойного давления, соответствующего данному отбору жидкости, надо знать среднюю плотность столба жидкости от уровня до забоя. Определение этой плотности, зависящей от обводненности и газосодержания столба жидкости, затруднительно.
В промысловой практике нашли применение так называемые волномеры, представляющие собой те же эхолоты, но вместо звукового импульса в межтрубное пространство посылается импульс давления газа. Этот импульс создается либо кратковременным впуском газа из баллона высокого давления, либо выпуском газа из межтрубного пространства с помощью специального отсекателя, присоединяемого к межтрубной задвижке.
Отсекатель состоит из заглушенного с одной стороны патрубка, имеющего на боковой поверхности одно или несколько отверстий. Эти отверстия перекрыты скользящей по поверхности патрубка специальной муфтой с отверстиями. При кратковременном перемещении этой муфты отверстия в патрубке и муфте на короткий момент времени совмещаются и таким образом создается импульс давления, зависящий от давления в межтрубном пространстве и от скорости перемещения муфты. Поэтому условия измерения уровня получаются нестандартизованными, а это осложняет создание регистрирующего устройства, которое могло бы избирательно регистрировать нужный отраженный сигнал с достаточной чувствительностью.
10.5.2. Динамометрия ШСНУ
Снятие диаграммы нагрузки на полированный шток в зависимости от хода называется динамометрией ШСНУ. Она осуществляется силоизмерительным регистрирующим прибором - динамометром.
Сопоставление снятой на ШСНУ динамограммы с теоретической позволяет выяснить отклонения от нормальной работы установки в целом и дефекты в работе самого ШСН. Регулярное обследование ШСНУ является обязательным, так как позволяет своевременно предотвратить более серьезные осложнения. Ди-намограмма, кроме того, позволяет уточнить режим откачки и по возможности его улучшить.
Известны динамографы механические, гидравлические, электрические, электромагнитные, тензометрические и др. Однако наибольшее распространение получили гидравлические динамографы, в которых нагрузка на полированный шток передается
Рис. 10.12 Принципиальная схема гидравлического динамографа и его установки
между траверсами канатной подвески: 1 - шнур, 2 - шкив ходового вита, 3 - ходовой
винт столика, 4 - направляющие салазки столика, 5 - бумажный бланк, прикрепляемый к столику,
-
6 - перо геликсной пружины, 7 - геликсная пружина, 8 - капиллярная трубка, соединяющая геликсную пружину с полостью силоизмерительной камеры - 9, 10 - нажимной диск,
11 - верхний рычаг силоизмерителыюй части, 12 - нижний рычаг силоизмерительной части
через рычажную систему на упругую диафрагму камеры, заполненной жидкостью. Давление жидкости в камере, пропорциональное усилию в штоке, по капилляру передается геликсной пружине. При увеличении давления геликсная пружина разворачивается и поворачивает перо, которое чертит линию на бумажном бланке, закрепленном на подвижном столике или барабане.
Перемещение столика пропорционально ходу полированного штока. Таким образом, смещение пера, пропорциональное усилиям в штоке, соответствует оси ординат, а смещение столика, пропорциональное ходу штока, - оси абсцисс.
Месдоза, геликсная пружина с пером, столик и его приводной червячный механизм смонтированы вместе в виде компактного прибора. Стандартное оборудование ШСНУ предусматривает возможность установки динамографа в разъеме между траверсами канатной подвески. Приводной механизм столика или барабана с помощью шнура соединяется с неподвижной точкой - сальником устьевого оборудования.
При движении штока вверх шнур разматывается со специального шкива, который при этом поворачивается на несколько оборотов, вращая червячный ходовой винт, и перемещает столик. Одновременно при этом заводится спиральная возвратная пружина. При обратном ходе столик возвращается в исходное
положение с помощью возвратной пружины, вращающей червяк и шкив в обратном направлении. Шнур при этом наматывается на шкив, оставаясь в натянутом состоянии. К прибору придается три сменных шкива различного диаметра. Это позволяет получить три различных масштаба хода, обычно 1 : 15, 1 : 30 и 1 :45.