ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 15.03.2024
Просмотров: 802
Скачиваний: 0
СОДЕРЖАНИЕ
1. ОБЩАЯ ХАРАКТЕРИСТИКА НЕФТЯНОЙ ЗАЛЕЖИ
1.1. Понятие о нефтяной залежи
1.2. Механизм использования пластовой энергии при добыче нефти
2. ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ
2.2. Приток жидкости к скважине
2.3. Режимы разработки нефтяных месторождений
3. ТЕХНОЛОГИЯ И ТЕХНИКА ВОЗДЕЙСТВИЯ НА ЗАЛЕЖЬ НЕФТИ
3.1. Цели и методы воздействия
3.2. Технология поддержания пластового давления закачкой воды
3.3. Основные характеристики поддержания пластового давления закачкой воды
3.5. Техника поддержания давления закачкой воды
3.6. Оборудование кустовых насосных станций
3.7. Технология и техника использования глубинных вод для ППД
3.8. Поддержание пластового давления закачкой газа
3.9. Методы теплового воздействия на пласт
3.10. Техника закачки теплоносителя в пласт
4. ПОДГОТОВКА СКВАЖИН К ЭКСПЛУАТАЦИИ
4.1. Конструкция оборудования забоев скважин
4.2. Приток жидкости к перфорированной скважине
4.3. Техника перфорации скважин
4.5. Методы освоения нефтяных скважин
4.6. Передвижные компрессорные установки
4.7. Освоение нагнетательных скважин
5. МЕТОДЫ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ
5.1. Назначение методов и их общая характеристика
5.2. Обработка скважин соляной кислотой
5.4. Поинтервальная или ступенчатая СКО
5.5. Кислотные обработки терригенных коллекторов
5.6. Техника и технология кислотных обработок скважин
5.7. Гидравлический разрыв пласта
5.8. Осуществление гидравлического разрыва
5.9. Техника для гидроразрыва пласта
5.10. Тепловая обработка призабойной зоны скважины
5.11. Термогазохимическое воздействие на призабойную зону скважины
5.12. Другие методы воздействия на призабойную зону скважин
6.1. Назначение и методы исследования скважин
6.2. Исследование скважин при установившихся режимах
6.3. Исследование скважин при неустановившихся режимах
6.4. Термодинамические исследования скважин
6.5. Скважинные дебитометрические исследования
6.6. Техника и приборы для гидродинамических исследований скважин
7. ОСНОВЫ ТЕОРИИ ПОДЪЕМА ЖИДКОСТИ В СКВАЖИНЕ
7.1. Физика процесса движения газожидкостной смеси в вертикальной трубе
7.2. Уравнение баланса давлений
7.3. Плотность газожидкостной смеси
8. ЭКСПЛУАТАЦИЯ ФОНТАННЫХ СКВАЖИН
8.1. Артезианское фонтанирование
8. 2. Фонтанирование за счет энергии газа
8. 4. Расчет фонтанного подъемника
8. 5. Расчет процесса фонтанирования с помощью кривых распределения давления
8. 6. Оборудование фонтанных скважин
8. 7. Регулирование работы фонтанных скважин
8. 8. Осложнения в работе фонтанных скважин и их предупреждение
9. ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ СКВАЖИН
9.1. Общие принципы газлифтной эксплуатации
9.2. Конструкции газлифтных подъемников
9.3. Пуск газлифтной скважины в эксплуатацию (пусковое давление)
9.4. Методы снижения пусковых давлений
9.6. Принципы размещения клапанов
9.7. Принципы расчета режима работы газлифта
9.9. Системы газоснабжения и газораспределения
9.11. Исследование газлифтных скважин
10. ЭКСПЛУАТАЦИЯ СКВАЖИН ШТАНГОВЫМИ НАСОСАМИ
10.1. Общая схема штанговой насосной установки, ее элементы и назначение
10.2. Подача штангового скважинного насоса и коэффициент подачи
10.3. Факторы, снижающие подачу ШСН
10.4. Оборудование штанговых насосных скважин
10.5. Исследование скважин, оборудованных штанговыми насосными установками
10.6. Эксплуатация скважин штанговыми насосами в осложненных условиях
11. эксплуатация скважин погружными центробежными электронасосами
11.1. Общая схема установки погружного центробежного электронасоса
11.2. Погружной насосный агрегат
11.3. Элементы электрооборудования установки
11.4. Установка ПЦЭН специального назначения
11.5. Определение глубины подвески ПЦЭН
11.6. Определение глубины подвески ПЦЭН c помощью кривых распределения давления
12.1. Принцип действия гидропоршневого насоса
12.2. Подача ГПН и рабочее давление
14. РАЗДЕЛЬНАЯ ЭКСПЛУАТАЦИЯ ПЛАСТОВ ОДНОЙ СКВАЖИНОЙ
14.2. Некоторые схемы оборудования скважин для раздельной эксплуатации пластов
14.3. Раздельная закачка воды в два пласта через одну скважину
15.3. Технология текущего ремонта скважин
15.4. Капитальный ремонт скважин
15.5. Новая технология ремонтных работ на скважинах
16. ЭКСПЛУАТАЦИЯ ГАЗОВЫХ СКВАЖИН
16.1. Особенности конструкций газовых скважин
16.2. Оборудование устья газовой скважины
16.3. Подземное оборудование ствола газовых скважин при добыче природного газа различного состава
16.4. Оборудование забоя газовых скважин
16.5. Расчет внутреннего диаметра и глубины спуска колонны НКТ в скважину
16.6. Способы и оборудование для удаления жидкости с забоя газовых и газоконденсатных скважин
16.7. Одновременная раздельная эксплуатация двух газовых пластов одной скважиной
В колонну НКТ под давлением нагнетают жидкость. Жидкость через отверстие в корпусе пакера поступает в камеру А (см. рис. 16.6). Под действием усилия, возникающего под давлением жидкости в камере, штифты 20 срезаются, поршень 27 и толкатель 37 перемещаются в противоположные стороны. При движении поршня 27 вверх усилие от него через втулку храпового механизма 26 передается на сдвигающееся кольцо 21. При этом резиновые манжеты 17, 18 деформируются и разобщают зоны за-трубного пространства, расположенные выше и ниже пакера. При движении толкателя 37 вниз шлипсы 39 выдвигаются наружу, чем достигается заякоривание пакера в обсадной колонне. Когда давление в колонне НКТ достигает 23 - 27 МПа, срезные тарированные штифты а разрушаются и шар с седлом падают на забой, а храповые механизмы 23 и 32 фиксируют пакер в уплотненном и заякоренном состоянии в обсадной колонне.
Для освобождения пакера от обсадной колонны колонну НКТ вращают по часовой стрелке на 15 оборотов, одновременно поднимая ее. При этом прежде всего от приложенного момента вращения срезаются штифты 5, затем при первых четырех оборотах разгрузочный упор 9 сворачивается с разгрузочной муфты 7 до упора с вращающейся муфтой 6. При этом отверстие во втулке 2 оказывается выше конца верхней трубы 8, и центральный канал пакера сообщается с затрубным пространством. Через него закачкой жидкости в затрубное пространство промывается надпакерная зона затрубного пространства от возможных накоплений механических примесей перед срывом пакера с места установки. При дальнейшем повороте загрузочная муфта 7 сворачивается с верхней трубы 8, которая последовательно перемещает за собой вверх корпус подшипника 12, упор подшипника 14, гильзу 19, сдвигающееся кольцо 21, втулку храпового механизма 26, поршень 27.
Поршень увлекает за собой цилиндр 29 и толкатель 37, при этом как уплотнительные элементы 17 и 18, так и шлипсы 39 освобождаются от торцевых упоров и принимают первоначальные диаметральные размеры. В этом состоянии пакер можно извлечь из скважины.
Забойные клапаны-отсекатели предотвращают открытое фонтанирование при повреждении или разрушении устьевого оборудования и колонны НКТ выше места установки забойного клапана-отсекателя. Они служат автоматическим запорным устройством скважины при демонтаже устьевого оборудования, подъеме колонны НКТ из скважины без задавки жидкостью.
На рис. 16.8 изображен клапан-отсекатель типа ОЗП-73. Отсе-катель забойный прямоточный (ОЗП) состоит из корпуса 6, к нижнему концу которого присоединен клапанный узел, имеющий седло 10, заслонку 14, пружину 12, ось 13 и кожух 15. К верхнему концу кожуха присоединен переводник 1, имеющий упор а. В центральном канале устройства помещен подвижный патрубок 4 со сменным штуцером 11. Подвижный патрубок 4 имеет наружную проточку. Между подвижным патрубком 4 и корпусом 6 установлено фиксирующее устройство, состоящее из пружины 5, цанги 7 и регулировочной гайки 3. Лепестки в цанге взаимодействуют с проточкой подвижного патрубка 4 и кольцевым выступом в корпуса 6. Кольца 2, 8 и 9 уплотняют поверхности сопрягаемых деталей. Устройство работает следующим образом. Перед спуском отсека-теля в скважину, исходя из рассчитанного дебита, устанавливают сменный штуцер 11 и гайкой 3 регулируют пружину 5 на определенное усилие. К переводнику 1 присоединяют уравнительный клапан и замок; сборку спускают в скважину и устанавливают в ниппеле.
Во время нормальной работы скважины газ или жидкость из пласта, проходя через центральный клапан устройства, поднимается на поверхность по колонне НКТ. При прохождении газа через штуцер 11 создается перепад давления, усилие от которого перемещает штуцер 11 с подвижным патрубком 4 в крайнее верхнее положение, но усилие пружины 5 фиксируемого устройства препятствует этому, в результате заслонка 14 остается открытой. Увеличение расхода газа через штуцер приводит к возрастанию перепада давления на нем. Когда усилие, вызванное перепадом давления, превысит усилие пружины 5, подвижный патрубок 4, отжимая пружину, начинает перемещаться вверх. После перемещения подвижного патрубка на 3 - 5 мм цанга 7 отходит от выступа в корпуса 6 и, выходя из взаимодействия с проточкой, освобождает подвижный патрубок 4 от действия пружины 5. Подвижный патрубок мгновенно перемещается до упора а переводника /. В этот момент под действием пружины 12 заслонка 14 перекрывает центральный канал устройства.
Клапан-отсекатель открывается следующим образом. В колонну НКТ на скребковой проволоке спускают уравнительную штангу, которая открывает уравнительный клапан. При этом нижний конец ее упирается в подвижный патрубок 4. После выравнивания давлений над и под заслонкой 14 подвижный патрубок 4 со сменным штуцером // под действием веса уравнительной штанги перемещается в крайнее нижнее положение. В результате заслонка устанавливается в положение «открыто». Лепестки цанги 7, взаимодействуя с кольцевым выступом корпуса 6 и проточкой б подвижного патрубка 4, фиксируют последний в рабочем положении.
Клапан-отсекатель ОЗП-73 имеет следующие преимущества: 1) седло и заслонка клапана находятся вне действия потока газа, не подвергаются абразивному износу; 2) отсутствует мертвая зона, влияющая на надежность работы отсекателя в скважинах, имеющих в потоке газа твердые взвеси; 3) небольшая длина отсекателя, благодаря тому что пружина фиксирующего устройства при наличии цанги имеет жесткую характеристику: 4) четкость срабатывания на закрытие, так как пружина сжимается только на 3 - 5 мм и перестает действовать на подвижную трубу, тогда как в других конструкциях усилие пружины постоянно воздействует на подвижный элемент устройства.
Саратовский филиал СКВ ВНПО «Союзгазавтоматика» разработал конструкцию клапана-отсекателя К-168-140, входящего в комплект скважинного оборудования с диаметром эксплуатационной колонны 219 мм на давление 14 МЛа (КО-219/168-140).
Пластовые газы многих газоконденсатных месторождений России имеют в своем составе коррозионные компоненты: сероводород, углекислый газ, кислоты жирного ряда (муравьиную, пропионо-вую, щавелевую, масляную). Так, например, пластовый газ Астраханского месторождения имеет следующий объемный состав, %: сероводород 26,5, углекислый газ 11; месторождения Урта-Булак - 5,35 и 3,15; Оренбургского - 1,3 - 5 и 0,5 - 1,75 соответственно.
Коррозионные компоненты при наличии пластовой минерализованной или конденсационной воды, высоких давлений и темпера тур вызывают интенсивную коррозию металлических обсадных колонн, НКТ, оборудования устья скважин, шлейфов, поверхностного оборудования промыслов.
При большом содержании сероводорода в газе невозможно использовать обычные скважинные приборы для измерения давлений и температур, проводить геофизические работы в скважинах. Наибольшей коррозии подвергаются тройники, крестовины, катушки, уплотнительные кольца фланцевых соединений, задвижки фонтанной арматуры. Интенсивность коррозии элементов оборудования устья скважин изменяется от 0,1 до 4 мм в год.
Рис. 16.9. Схема компоновки подземного оборудования скважин
на Оренбургском газоконденсатном месторождении:
1 - хвостовик диаметром 127 или 114 мм и длиной 100 - 380 м; 2 - пакерное устройство
с минимальным диаметром проходного сечения 57 мм; 3 - клапан-отсекатель с проходным
сечением 33,4 мм; 4 - циркулярный клапан типа «скользящая втулка» с внутренним
диаметром 73 мм; 5 - НКТ диаметром 127 или 114 мм
Срок службы колонн НКТ до обрыва в верхней части и падения на забой скважины на месторождениях Краснодарского края составляет 1 - 18 мес, нарушение герметичности задвижек фонтанной арматуры происходит в течение 1 - 2 мес, фланцевых соединений - в течение 4 - 6 мес.
На рис. 16.9 изображена схема компоновки скважинного оборудования на Оренбургском газоконденсатном месторождении. В добывающие скважины спускается скважинное оборудование фирмы «Камко» (США), включающее: хвостовик диаметром 127 или 114 мм, длиной 100 - 380 м, предназначенный для улучшения условий освоения и эксплуатации вскрытой продуктивной толщины пласта; пакерное устройство с диаметром проходного сечения 57 мм для разобщения затрубного пространства от внутренней полости НКТ с целью предохранения эксплуатационной колонны от воздействия коррозионно-активных компонентов в добываемом газе; клапан-отсекатель с диаметром проходного сечения 33,4 мм в пакерном устройстве для
предотвращения чрезмерного увеличения дебита скважины; циркуляционный клапан с внутренним диаметром 73 мм типа «скользящая втулка» для сообщения трубного пространства с затрубным; НКТ диаметром 127 или 114 мм.
Защита внутренней поверхности металлической обсадной колонны и внешней поверхности НКТ осуществляется разобщением пласта и затрубного пространства скважины при помощи разобщителя (пакера) и заполнением затрубного пространства ингибированной жидкостью. Защита другого металлического оборудования скважины от коррозии осуществляется при помощи периодической закачки ингибитора коррозии в призабойную зону пласта или непрерывной его закачки в затрубное пространство скважины с помощью насосов и подачи ингибитора в НКТ из затрубного пространства скважины через специальные ингибиторные клапаны в колонне НКТ.
Для защиты от коррозии внешней поверхности хвостовика, направленного воздействия соляной кислотой на карбонатные породы открытого забоя скважины, получения более точных данных по геофизическим исследованиям скважин на Оренбургском газоконденсатном месторождении усложнили конструкцию хвостовика, изменили узел разобщения призабойной зоны пласта от затрубного пространства.
Хвостовики скв. 196, 743, 775 оборудовали подпакерным циркуляционным клапаном, струйными клапанами, ниппелем для установки скважинкой пробки.
Для проведения дебитометрии, поинтервального замера пластовых давлений, отбора проб в колонне обсадных труб в призабойной зоне скважины в Тюменниигипрогазе разработали конструкцию подвижного хвостовика. В процессе эксплуатации скважины хвостовик находится в крайнем нижнем положении. Продукция скважины движется через хвостовик и НКТ на устье. При проведении исследований в процессе работы скважины в нее через лубрикатор на каротажном кабеле или канате спускается специальное подъемное устройство, которое зацепляет хвостовик в нижней его части. Хвостовик поднимается вверх, при этом на поверхности следят за нагрузкой по индикатору массы. Захватывающее устройство поднимается на поверхность. В освобожденной от хвостовика зоне перфорации проводят указанные исследования. После проведения необходимого комплекса исследований хвостовик с помощью специального устройства вновь опускается вниз в свое рабочее положение.
В качестве ингибиторов коррозии используются кубовый остаток разгонки масляного слоя, получаемого при синтезе 2-метил, 5-этилпиридинаг имеющий промышленное название И-1-А, смесь аминокислоты и полиамина жирного ряда с длинной цепью, имеющая название РА-23, и многие другие: катапин БПВ, КИ-1, КПИ-1, ПБ-5, БА-6, «Виско», ИФХАНгаз, Донбасс-1, И-25-Д.
На некоторых месторождениях с высокими пластовыми давлениями и низкими температурами используются комплексные ингибиторы коррозии и гидратообразования типа КИГИК.
В последние годы стали изготовляться высокогерметичные коррозионностойкие насосно-компрессорные трубы НКТ-114 из сталей марок 18X1ГМФА, 18Х1Г1МФ группы прочности К, размером 114 х 7 мм для оборудования скважин на месторождениях, содержащих сероводород. Они выдерживают давление до 50 МПа. Впервые колонна НКТ из труб НКТ-114 была спущена в скв. 234 Оренбургского газоконденсатного месторождения. 76
Для предотвращения растепления многолетнемерзлых пород на месторождениях Севера используются двухстенные трубы с высокоэффективной теплоизоляцией между ними. ВНИИГаз разработал насосно-компрессорные теплоизолированные трубы модели ЛТТ-168 X 73, состоящей из внешней несущей трубы 168 X ПД и внутренней трубы 73 х 5,5Д. Между стенками труб диаметрами 168 и 73 мм может помещаться теплоизоляция любого типа с коэффициентами теплопроводности до 0,01163 Вт/(м-К). Трубы ЛТТ-168 X 73 использованы в конструкции скв. 110 Южно-Соленинского месторождения.
Особое конструкторское бюро по проектированию нефтегазодобывающих машин и оборудования (ОКБ НЕФТЕМАШ, г. Баку) разработало комплексы оборудования для эксплуатации газовых скважин типов КПГ (комплекс подземный для газовых скважин) и КСГ (комплекс скважинный для газовых скважин), которые с 1982 г. серийно выпускаются заводами ВПО «Союзнефтемаш».