Файл: 1. Современные представления о строении и функции мембран.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.04.2024
Просмотров: 290
Скачиваний: 0
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
92. Гормоны паращитовидных желез. Паращитовидные железы ( у человека их в среднем 4) эпителиального происхождения, кровоснабжаются из щитовидных артерий и, так же как щитовидная железа, иннервируются симпатическими и парасимпатическими волокнами. Гормон – паратирин – является кальцийрегулирующим гормоном, повышающим уровень кальция в плазме крови, в связи с чем его называют гиперкальциемическим гормоном. Регуляция секреции паратирина происходит по механизму отрицательной обратной связи уровнем ионизированного кальция плазмы крови. Низкая концентрация кальция стимулирует секрецию паратирина при одновременном повышении уровня цАМФ в клетках. Стимулируют продукцию паратирина и симпатические влияния на коетки паращитовидных желез через бета-адренорецепторы, также приводящие к возрастанию в клетках железы содержания цАМФ. Подавляют секрецию паратирина высокий уровень кальция в крови и почечный гормон кальцитриол.
Основные эффекты паратирина проявляются со стороны органов-мишеней гормона – костной ткани, почек и ЖКТ. Реализация действия паратирина осуществляется через цАМФ, и повышение уровня этого вторичного посредника в моче является важным диагностическим критерием избыточной секреции паратирина. Эффект гормона на костную ткань обусловлен стимуляцией активности и увеличением количества остеокластов, резорбирующих кость. Под влиянием паратирина в костной ткани накапливаются лимонная и молочная кислоты, вызывающие местный ацидоз. Кислая реакция среды в костной ткани тормозит активность щелочной фосфатазы – фермента, необходимого для образования основного минерального вещества кости – фосфорнокислого кальция. Избыток лимонной и молочной кислот ведет к образованию растворимых в воде солей кальция – цитрата и лактата, вымыванию их в кровь, что приводит к деминерализации кости. Избыток цитрата выводится с мочой, что является важным диагностическим признаком повышенного уровня секреции паратирина. В почках гормон снижает реабсорбцию кальция в проксимальных канальцах, что предотвращает потери кальция с мочой и способствует гиперкальциемии. Реабсорбция фосфата в почках под влиянием паратирина угнетается, это приводит к фосфатурии и снижению содержания фосфата в крови – гипофосфатемии. Почечные эффекты паратирина проявляются также в диуретическом и натрийуретическом действии, угнетении канальцевой реабсорбции воды, снижении эффективности действия на канальцы вазопрессина. В кишечнике паратирин прямо, но главным образом опосредованно через кальцитриол, стимулирует всасывание кальция, что также способствует гиперкальциемии.
Пратирин повышает поступление кальция во внутриклеточную среду и транспорт иона из цитозоля во внутриклеточные депо, увеличивает удаление свободного кальция из клеток. Благодаря этому изменяется возбудимость и реактивность клеток к нейрогенным и гуморальным регуляторным стимулам. Паратирин вызывает повышение образования в почках кальцитриола, стимулирует секрецию соляной кислоты и пепсина в желудке.
Повышенная секреция паратирина при гиперплазии или аденоме околощитовидных желез сопровождается деминерализацией скелета с деформацией длинных трубчатых костей, образованием почечных камней, мышечной слабостью, депрессией, нарушениями памяти и концентрации внимания.
93. Энлокринная функция поджелудочной железы. Эндокринную функцию в поджелудочной железе выполняют скопления клеток эпителиального происхождения, получившие названия островков Лангерганса и составляющие всего 1-2 % массы поджелудочной железы – экзокринного органа, образующего панкреатический пищеварительный сок. Количество островков в железе взрослого человека очень велико и составляет от 200 тысяч до полутора миллионов. В островках различают несколько типов клеток, продуцирующих гормоны: альфа-клетки образуют глюкагон, бета-клетки – инсулин, дельта-клетки – соматостатин, джи-клетки – гастрин и РР- или F-клетки – панкреатический полипептид. Помимо инсулина в бета-клетках синтезируется гормон амилин, обладающий противоположными инсулину эффектами. Кровоснабжение островков более интенсивно, чем основной паренхимы железы. Иннервация осуществляется постганглионарными симпатическими и парасимпатическими нервами, причем среди клеток островков расположены нервные клетки, образующие нейроинсулярные комплексы.
Инсулин синтезируется в эндоплазматическом ретикулуме бета0клеток вначале в виде пре-проинсклина, затем отнего отщепляется 23-аминокислотная цепь и остающаяся молекула носит название проинсулина. В комплексе Гольджи проинсулин упаковывается в гранулы, в них осуществляется расщепление проинсулина на инсулин и соединительный пептид (С-пептид). В гранулах инсулин депонируется в виде полимера и частично в комплексе с цинком. Количество депонированного в гранулах инсулина почти в 10 раз превышает суточную потребность в гормоне. Секреция инсулина происходит путем экзоцитоза гранул, при этом в кровь поступает эквимолярное количество инсулина и С-пептида. Определение содержания последнего в крови является важным диагностическим тестом оценки секреторной способности β-клеток.
Секреция инсулина является кальцийзависимым процессом. Под влиянием стимула – повышенного уровня глюкозы в крови – мембрана бета-клеток деполяризуется, ионы кальция входят в клетки, что запускает процесс сокращения внутриклеточной микротубулярной системы и перемещение гранул к плазматической мембране с последующим их экзоцитозом.
Секреторная функция разных клеток островков взаимосвязана, зависит от эффектов образуемых ими гормонов, в связи с чем островки рассматриваются как своеобразный «мини-орган». Выделяют 2 вида секреции инсулина: базальную и стимулированную. Базальная секреция инсулина осуществляется постоянно, даже при голодании и уровне глюкозы крови ниже 4 ммоль/л.
Стимулированная секреция инсулина представляет собой ответ бета-клеток островков на повышенный уровень D-глюкозы в притекающей к бета-клеткам крови. Под влиянием глюкозы активируется энергетический рецептор бета-клеток, что увеличивает транспорт в клетку ионов кальция, активирует аденилатциклазу и пул (фонд) цАМФ. Через эти посредники глюкоза стимулирует выброс инсулина в кровь из специфических секреторных гранул. Усиливает ответ бета-клеток на действие глюкозы гормон двенадцатиперстной кишки — желудочный ингибиторный пептид (ЖИП). В регуляции секреции инсулина определенную роль играет и вегетативная нервная система. Блуждающий нерв и ацетилхолин стимулируют секрецию инсулина, а симпатические нервы и норадреналин через альфа-адренорецепторы подавляют секрецию инсулина и стимулируют выброс глюкагона. Специфическим ингибитором продукции инсулина является гормон дельта-клеток островков — соматостатин. Этот гормон образуется и в кишечнике, где тормозит всасывание глюкозы и тем самым уменьшает ответную реакцию бета-клеток на глюкозный стимул. Образование в поджелудочной железе и кишечнике пептидов, аналогичных мозговым, например соматостатина, подтверждает существование в организме единой APUD-системы. Секреция глюкагона стимулируется снижением уровня глюкозы в крови, гормонами желудочно-кишечного тракта (ЖИП гастрин, секретин, холецистокинин-панкреозимин) и при уменьшении в крови ионов Са2+. Подавляют секрецию глюкагона инсулин, соматостатин, глюкоза крови и Са2+. В эндокринных клетках кишечника образуется глюкагоноподобный пептид-1, стимулирующий всасывание глюкозы и секрецию инсулина после приема пищи. Клетки желудочно-кишечного тракта, продуцирующие гормоны, являются своеобразными «приборами раннего оповещения» клеток панкреатических островков о поступлении пищевых веществ в организм, требующих для утилизации и распределения участия панкреатических гормонов. Эта функциональная взаимосвязь нашла отражение в термине «гастро-энтеро-панкреатическая система».
Физиологические эффекты инсулина
Действие инсулина на клетки-мишени начинается после его связывания со специфическими димерными мембранными рецепторами, при этом внутриклеточный домен рецептора обладает тирозинкиназной активностью. Инсулин-рецепторный комплекс не только передает сигнал внутрь клетки, но и частично путем эндоцитоза поступит внутрь клетки к лизосомам. Под влиянием лизосомальной протеазы инсулин отщепляется от рецептора, при этом последний либо разрушается, либо возвращается к мембране и вновь встраивается в нее. Многократное перемещение рецептора от мембраны к лизосомам и обратно к мембране носит название рециклизация рецептора. Процесс рециклизации важен для регуляции количества инсулиновых рецепторов, в частности обеспечения обратной зависимости между концентрацией инсулина и количеством мембранных рецепторов к нему.
Образование инсулин-рецепторного комплекса активирует тирозинкиназу, запускающую процессы фосфорилирования внутриклеточных белков. Происходящее при этом аутофосфорилирование рецептора ведет к усилению первичного сигнала. Инсулин-рецепторный комплекс вызывает активирование фосфолипазы С, образование вторичных посредников инозитолтрифосфата и диацилглицерола, активацию протеинкиназы С, ингибирование цАМФ. Участие нескольких систем вторичных посредников объясняет многообразие и различия эффектов инсулина в разных тканях.
Инсулин оказывает влияние на все виды обмена веществ, способствует анаболическим процессам, увеличивая синтез гликогена, жиров и белков, тормозя эффекты многочисленных контринсулярных гормонов (глюкагона, катехоламинов, глюкокортикоидов и соматотропина). Все эффекты инсулина по скорости их реализации подразделяют на 4 группы: очень быстрые (через несколько секунд) — гиперполяризация мембран клеток (за исключением гепатоцитов), повышение проницаемости для глюкозы, активация Na+-K+-АТФазы, входа К+ и откачивания Na+ , подавление Са2+-насоса и задержка Са2+; быстрые эффекты (в течение нескольких минут) — активация и торможение различных ферментов, подавляющих катаболизм и усиливающих анаболические процессы; медленные процессы (в течение нескольких часов) — повышенное поглощение аминокислот, изменение синтеза РНК и белков-ферментов; очень медленные эффекты (от часов до суток) — активация митогенеза и размножения клеток. Важнейшим эффектом инсулина в организме является увеличение в 20—50 раз транспорта глюкозы через мембраны мышечных и жировых клеток путем облегченной диффузии по градиенту концентрации с помощью чувствительных к гормон) мембранных белковых переносчиков, называемых ГЛЮТ. В мембранах разных видов клеток выявлены 6 типов ГЛЮТ, но только один из них — ГЛЮТ-4 — является инсулинозависимым и
находится в мембранах клеток скелетных мышц, миокарда, жировой ткани. Инсулин влияет на угле водный обмен, что проявляется:
1) активацией утилизации глюкозы клетками,
2) усилением процессов фосфорилирования;
3) подавлением распад; и стимуляцией синтеза гликогена;
4) угнетением глюконеогенеза;
5) активацией процессов гликолиза;
6) гипогликемией.
Действие инсулина на белковый обмен состоит в:
1) повышении проницаемости мембран для аминокислот;
2) усилении синтеза иРНК;
3) активации в печени синтеза aминокислот;
4) повышении синтеза и подавлении распада белка.
Основные эффекты инсулина на липидный обмен:
• стимуляция синтеза свободных жирных кислот из глюкозы;
• стимуляция синтеза липопротеиновой липазы в клетках эндотелия сосудов и благодаря этому активация гидролиза связанных с липопротеинами крови триглицеридов и поступления жирных кислот в клетки жировой ткани;
• стимуляция синтеза триглицеридов;
• подавление распада жира;
• активация окисления кетоновых тел в печени.
Благодаря влиянию на клеточную мембрану инсулин поддерживает высокую внутриклеточную концентрацию ионов калия, что необходимо для обеспечения нормальной в возбудимости клеток.
Широкий спектр метаболических эффектов инсулина в организме свидетельствует о том, что гормон необходим для осуществления функционирования всех тканей, органов и физиологических систем, реализации эмоциональных и поведенческих актов, поддержания гомеостазиса, осуществления механизмов приспособления и защиты организма от неблагоприятных факторов среды. Недостаток инсулина (относительный дефицит по сравнению с уровнем контринсулярных гормонов, прежде всего глюкагона) приводит к сахарному диабету. Избыток инсулина в крови, например при передозировке, вызывает гипогликемию с резкими нарушениями функций центральной нервной системы, использующей глюкозу как основной источник энергии независимо от инсулина.
Глюкагон является мощным контринсулярным гормоном и его эффекты реализуются в тканях через систему вторичного посредника аденилатциклаза—цАМФ. В отличие от инсулина, глюкагон повышает уровень сахара крови, в связи с чем его называют гипергликемическим гормоном. Основные эффекты глюкагона проявляются в следующих сдвигах метаболизма в организме: