Файл: Лариков Е.А. Узлы и детали механизмов приборов. Основы теории и расчета.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.04.2024

Просмотров: 134

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

таких зависимостей через а (а), где а — некоторая входная без­ размерная величина, а а (а) — ее непрерывная, дифференцируе­ мая функция. Вся задача может содержать несколько таких сту­ пеней. Обозначим суммарный комплекс последних при помощи символа А (а), в нем а = alt а,, .. . . и т. д., т. е. все относитель­ ные входные величины или координаты по каждой функциональ­ ной составляющей а (а) расчленения.

Ко 2-му классу отнесем все функционально-операционные сту­ пени-зависимости, описывающие идеальную работу простейших устройств операций действия и преобразования, воспроизводящие разрывные функциональные связи выходных величин с входными. Подобно непрерывно-алгебраическим операционные зависимости получают, когда на входы соответствующих устройств подаются некоторые сигналы-величины и сопутствующие им воздействия, а на выходах возникают ответные операции, т. е. действия по пре­ одолению сопротивлений, новые уровни выходных величин или положения выходных элементов и т. д. При учете первой особен­ ности математического расчленения в настоящих связях пока исключены переходные процессы, сглаживающие резкие вневре­ менные изменения, а также другие факторы, отражающие мате­

риальность устройств. Как

и непрерывные, они

предстают

здесь

в чисто идеальной безразмерной форме.

 

 

 

Обозначим каждую операционную

ступень-зависимость

ма­

лой буквой о (К), а весь

суммарный

комплекс

таких ступеней,

входящих в общее представление задачи, символом большой

буквы

О (X).

Символ О (к), как и его входные

величины

К =

= Xlt

Х2, К3,.

. . и т. д., характеризующие

сигналы

или воздей­

ствия, так же имеет безразмерную форму.

 

 

 

 

3

класс включает в себя ступени-состояния,

не

отражающие

функциональные связи входных и выходных

величин. Для

каж­

дой такой ступени введем обозначение с (—) при отсутствии вход­ ной величины, а для комплекса их — С(—). В большинстве случаев ступени-состояния с (—) являются вспомогательными. Они обеспечивают возможности воспроизведения некоторых или даже многих из зависимостей а (а), о (X) и не участвуют непосред­ ственно в реализации задач проектирования. Однако для реаль­ ных устройств их значение велико, так как относительное коли­ чество ступеней-состояний может в несколько раз превосходить количество а (а), о (%) (механические устройства). Они являются важными составляющими всякой конструкции.

Представляется, что на самом начальном этапе расчленения задач проектирования никаких других столь общих ступеней по связям и операциям пока указать невозможно, и в этом, по-ви­ димому, нет необходимости.

Алгебраический А (а), операционный О (к) и. комплекс со­ стояний С (—) и вместе со схемой относительного расположения их членов и взаимными связями (рис. 2) составляют функцио­ нально-операционный алгоритм задачи проектирования всякого

12


устройства. Для его обозначения введем символ ФО (а, Я) и запишем

ФО (а,

X) =

А

(а)

+ О (Я) +

С (—).

-(Г)

Формула (I)

означает,

что

все проектируемое

устройство

должно состоять

из

суммы

простейших

устройств,

отвечающих

алгебраическим, операционно-функциональным и ступеням-со­ стояниям.

Пока не произведены числовые расчеты, опирающиеся на исходные данные и на обычно используемые опытные коэффи­ циенты и характеристики, нельзя указать конкретные, абсолют­ ные значения функциональных ступеней а (а), о (Я), ступенейсостояний с (—), их координат и конструктивных параметров (размеры, напряжения, токи и т. д.). В самом начале они могут выступать только в относительном, безразмерном виде, не завися­ щем'от абсолютных размеров соответствующих устройств и нагру­ зочных факторов. Единственными характеристиками для них оказываются функциональные формы соответствующих кривых или конфигурации семейств последних, развернутые вдоль без­ размерных переменных и относительных конструктивных пара­ метров. Если, например, а (а) — функция только одной перемен­ ной, то она выражается кривой на плоскости в относительных координатах а (а) и а. Если же а (а, у) зависит, помимо того,

/

1

от относительного конструктивного параметра у — — ;

- у и т. д.,

то эта функция выражается семейством параметрических кривых. Свою размерность и абсолютные значения их аналоги получают после расчета подобранных устройств и умножения на найденные масштабы.

Таким образом, функционально-операционный алгоритм ФО (а, Я), указанный формулой и схемой, определяет принци­ пиальную картину проектируемого устройства, точно указывает его преобразовательно-операционные свойства и относительное конструктивное строение. На схеме (рис. 2) часто могут быть не представлены ступени-состояния, дополняющие многие или каж­ дую из ступеней а (а), о (Я). Указываются только те из с (—), которые вместе с а (а), о (Я) выражают существо задачи на проекти­ рование.

2.УЗЛЫ И ДЕТАЛИ

Согласно конструктивному принципу составляющие А (а), О (К) и С (—) алгоритма ФО (а, Я) должны быть реализованы каждый с помощью минимального количества простейших уст­ ройств, т. е. числа ступеней а (а), о (Я.), с (—) и достаточно точно

спозиций общей задачи. Такую реализацию можно производить

ина практике производят, опираясь на заранее известные, опро­ бованные и ставшие типовыми элементарные устройства или же

13


i-ia аналогичные вновь придуманные, когда существующие не подходят. Все такие устройства являются действительно простыми, а в функциональном отношении они характеризуются лишь тем, что с их помощью может быть осуществлена какая-либо ступень. В механических конструкциях их называют узлами или, менее точно, — механизмами, в немеханических — элементами. Здесь сохраним -название :— узел, так как оно представляется доста­ точно подходящим и точным. С узлов начинаются: а) воспроизве­ дение функций; б) конструкция, в) получение деталей и т. д. Поэтому, опираясь на сказанное, можно дать такое определение понятию узел.

Узел — это конструктивное ядро, на основе которого мате­ риально может быть -воспроизведена какая-нибудь алгоритми­

ческая непрерывно-алгебраическая

ступень а (а),

операционная

О (к) или ступень состояния с (—), полученная как

результат при

расчленении исходной задачи на

проектирование.

 

С внешней стороны узел может представлять собой одну деталь или же объединение двух и большего их количества. Число дета­ лей не имеет особого значения, но по многим причинам оно огра­ ничено. Это зависит от природы физического процесса, положен­ ного в основу построения узла, от требований к нему и характера его алгоритмической ступени а (а), о (А.), с (—), от совершенства конструкции.

Существующие узлы многочисленны и разнообразны, но, пользуясь следствиями второй математической особенности про­

цесса

расчленения сложного, можно

указать

три

рода

узлов.

1-й

род узлов — объединение деталей или

даже

одна

деталь,

предназначенные

для воспроизведения

алгебраических ступеней

а (ос) непрерывной

связи выходных величин с

входными.

 

Их алгоритмы преобразования а (ос) не зависят от характера изменения переменных а во времени или от каких-то других воз­ можных первичных независимых. Точно так же, кроме особых случаев, которые здесь не рассматриваются, они не должны зави­ сеть от конкретных размеров узлов и абсолютных факторов на­ грузок. Такой алгоритм может зависеть только от самой входной переменной а и собственных преобразовательных свойств и воз­ можностей, заложенных в структуре узла.

Этим требованиям удовлетворяет единичное передаточное от­ ношение узла, получаемое ктк отношение дифференциала безраз­

мерной выходной

величины к дифференциалу безразмерной

вход­

ной, т. е.

 

 

 

 

 

 

e t a ) = i £ H £

_ |

(П)

где а ь ы х — безразмерная

величина на

выходе узла.

 

Функция а (а)

может

быть постоянной, тогда соответствующий

узел обеспечивает линейную зависимость выхода от входа. В дру­ гих случаях она.— непрерывная функция независимой ос и, нако-

14


ней,; — функция а и некоторых относительных конструктивных параметров у. В последнем случае имеем нелинейную связь, представленную одной из кривых аг (а), а3 (а), ат (а, 7) рис. 3.

Для механических устройств указанным функциям отвечают узлы передачи и преобразования движений, перемещений, а так же сопутствующих сил и моментов. Как примерможно назвать узел простой зубчатой пары, состоящий из двух сцепленных между собой зубчатых колес, передающих и изменяющих при постоянном

2, 3); б — соответствующие алгоритмические

ступени; в — алго­

ритмическая ступень, з а в и с я щ а я от а

параметра У

передаточном отношении а% (а) = i (рис. 3,

б) вращение и момент

от одной оси к другой. Кулачковый узел может воспроизвести на своем выходе функциональные кривые / или 3 при передаточных отношениях а х (а), а3 (а) (рис. 3, а, б). Рычажный тангенсный узел позволяет получить более сложную функцию аТ (а, у), зави­ сящую от безразмерного параметра 7 (рис. 3, в). Ее преобразова­ тельные свойства выражаются семейством параметрических кри­ вых.

•Для немеханических устройств узлами 1-го рода являются узлы непрерывного преобразования и передачи напряжений, то­ ков, магнитных полей, температуры, световых потоков и других величин и воздействий, отвечающих используемым физическим явлениям. Как правило, связь выхода со входом у них нелинейна, а алгоритмическая ступень преобразования представляется одним или многими семействами параметрических кривых, т. е. много­ мерной конфигурацией этих кривых.

Главная отличительная особенность узлов 1-го рода заключена в их аналитичности, т. е. в том, что на их основе осуществляются

15

устройства непрерывных линейных и нелинейных зависимостей между выходными и входными величинами.

В механических устройствах узлы 1-го рода носят название передаточных или просто передач: Число основных типов их не­ велико (семь), они ясно выделены и уже давно подвергаются спе­ циальному изучению. В немеханических устройствах существует большее разнообразие, однако здесь обособление еще не произво­ дилось.

2- й род узлов — это объединение деталей или просто деталь, позволяющие на своей основе воспроизводить функциональнооперационные ступени-зависимости о (к) разрывного, импульс­ ного, релейно-гистерезисного или другого резко неаналитического характера, но, тем не менее, связывающие некоторые выходные с некоторыми входными величинами. Примеры «кривых» таких связей показаны на рис. 1, а. Здесь при достижении входной вели­ чиной определенного значения, выходная скачком, т. е. в идеале мгновенно, вырастает до другого уровня, либо меняет свою поляр­ ность, падает до нуля и т. д. Характер такого перехода обусловлен конструктивными особенностями узла, либо физическим явле­ нием, положенным в его основу. С развитием автоматики, радио­ электроники и вычислительной техники число устройств, воспро­ изводящих подобные зависимости, резко возросло и продолжает увеличиваться. Будем называть такие узлы операционно-пере- даточными.

По отношению к операционно-передаточным узлам нельзя говорить о передаточном отношении, как о производной по фор­ муле (II). Она для мест скачков и разрывов на мгновения приво­ дила бы к бесконечно большим значениям.

Функции о (к) пока плохо изучены, но представляется, что этот род узлов должен характеризоваться теми безразмерными формами разрывных связей («кривых»), какими в идеале описы­ вается их работа. Следовательно, в функциональном отношении каждый узел 2-го рода отличается от всякого другого (так же 2-го рода) только формой «кривой» своей операционной зависимости.

Нетрудно видеть, что по функциональным свойствам операцион- но-передаточные узлы 2-го рода резко отличаются от узлов не­ прерывно передаточных 1-го рода. Настоящее различие пред­ ставляется важным: оно указывает на разные математические основы их рассмотрения.

3- й род узлов составляют узлы воспроизведения ступеней — состояний третьего класса, обозначенных символом с (—). Они не могут дать какую бы го ни было функциональную связь, для них нельзя указать вход и выход по величинам и по воздействиям, однако не исключена возможность, что ступени с (—) найдут место в общей структуре математического описания основ проек­ тирования.

Распространенными механическими узлами операций-со­ стояний .являются известные узлы опор вращения. С помощью

16


одной, но чаще двух опор создается возможность осуществления операции вращения некоторой детали или даже целой сборки вокруг определенным образом ориентированной оси.

Наиболее многочисленными узлами операций 3-го рода оказы­ ваются различные сборочные единицы, в которых объединяются две или большее количество деталей. В самом простом случае такое объединение преследует цель получения узла, равноцен­ ного одной более сложной детали. Например, на ось или вал при помощи шпонки производится посадка зубчатого колеса. В ре­ зультате получаем целое, аналогичное сложной детали. Его осу­ ществление обусловлено конструктивно-технологическими сообра­ жениями, т. е. стремлением к упрощению изготовления за счет расчленения на составляющие, необходимостью применения раз­ нородных материалов для получения специальных или более высоких физических свойств ответственных мест узла и, наконец, стремлением обеспечить возможность сборки всего устройства или его части. Развитие технологии, изыскание иных физических

явлений

или более квалифицированное конструирование могут

0 позволить

получать такой узел сразу как единое целое, — тогда

он заменяется просто деталью. Узлы состояний'этого вида могут объединять большое число деталей и быть сложными, включаю­ щими узлы и других родов. Однако причины, по которым они возникают, отражают конструктивную сторону процессов про­ ектирования и последующего производства.

По-видимому, необходимо различать две внутриродовые группы узлов состояний 3-го рода. К первой группе отнесем те, в которых помимо силового или иного по природе взаимодействия деталей, осуществляются, некоторые физические процессы, например,

относительные

перемещения поверхностей

соприкосновения, как

в узлахопор

и направляющих (назовем

их узлами процессов).

Ко второй группе отнесем все остальные, т. е. те, которые служат целям поддержания, соединения, закрепления и т. д. Эти узлы являются чисто сборочными, позволяющими иметь состояния равновесия или определенной относительной ориентации.

Передаточно-операционные узлы 1-го и 2-го рода вместе с до­ полняющими их узлами первой и второй группы узлов-состояний 3-го рода составляют ту исходную функционально-конструктивную базу, нал<оторой покоится рабочая сторона синтеза машин, при­ боров, автоматических систем и автоматов. В общем случае работа узлов довольно сложна, требует специального теоретического рассмотрения, а также хорошей экспериментальной основы, которая дополняет теорию и указывает границы приемлемых кон­ структивных решений.

В основу представлений о всякой детали необходимо положить следующие три одинаково важные признака:

во-первых, деталь — это первичное единое и неделимое целое, которое при целесообразном объединении е другими деталями

образует

узел;

^ ........... •

'"'""""^t

2 Е ,

А . Лариков

 

17